![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/214705/image.png)
how do i rotate an airfoil points? and plot.
8 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Jorge Cabrera
el 18 de Abr. de 2019
Editada: David Wilson
el 19 de Abr. de 2019
How do I rotate an airfoil points? I have all the new chord lengths and the angles in which are needed to rotate. I need to plot all these airfoils 16 times together in respect to their new angle and chord length. I know I need a sort of for loop but evetrytime I plot, the figure is funky looking.
HELP ME PLEASE!!!
NEW Chord lengths and twist angle, R vaules
Chord length= [ 0 0.0082328 0.0164657 0.0246985 0.0329313 0.0411642 0.049397 0.0576298 0.0658626 0.07409548 0.08232831 0.09056114 0.09879397 0.1070268 0.11525963 0.12349246 ]
r =[ 0 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3 0.33 0.36 0.39 0.42 0.45]
twist = [1.0471976 0.7561128 0.5465782 0.4134997 0.3278728 0.2699279 0.2286826 0.1980428 0.1744757 0.15582879 0.14072889 0.12826373 0.1178059 0.10891077 0.10125497 0.09459804]
BELOW
THIS IS THE CODE I STATRED WITH FOR NACA
THE PLOT SHOULD LOOK SOMETHING LIKE THIS BELOW
![task2_8.png](https://www.mathworks.com/matlabcentral/answers/uploaded_files/214682/task2_8.png)
c1= 1;
%c1= [0,0.008232831,0.016465661,0.024698492,0.032931323,0.041164153,0.049396984,0.057629815,0.065862645,0.074095476,0.082328307,0.090561137,0.098793968,0.107026798,0.115259629,0.12349246];
angle =[1.047197551 0.756112778 0.546578176 0.413499657 0.327872784 0.269927858 0.228682627 0.198042808 0.174475668 0.155828787 0.140728889 0.128263734 0.117805904 0.108910765 0.101254972 0.094598036];
s=num2str(5410);
%4 digits
NACA=s;
% m represents first digit out of the scalar
m =str2double(s(1))/100;
%p pulls the second digit out of the scalar
p=str2double(s(2))/10;
%t pulls and represents the third and fourth digit out of the scalar
t=str2double(s(3:4))/100;
% define x
r=linspace(0, c1, 250);
%yt fuction including the coeffiencients
yt =5*t*c1*(.2969*(sqrt(r/c1))+-.1260*(r/c1)+-.3516*(r/c1).^2+.2843*(r/c1).^3+-.1015*(r/c1).^4);
%yt2 =5*t*c2*(.2969*(sqrt(x/c2))+-.1260*(x/c2)+-.3516*(x/c2).^2+.2843*(x/c2).^3+-.1015*(x/c2).^4);
for k = 1:length(r)
if r(k) <= p*c1
yc(k)=m*(r(k)/p^2)*(2*p-(r(k)/c1));
dx(k)=(2*m)/p^2*(p-(r(k)/c1));
elseif r(k) > p*c1
yc(k)=m*((c1-r(k))/(1-p)^2)*(1+(r(k)/c1)-(2*p));
dx(k)=((2*m)/(1-p)^2)*(p-(r(k)/c1));
end
%upper and lower limits of the airfoil (xu,yu) ; (xl,yl)
angle=atan(dx(k));
xu(k)=r(k)-yt(k)*-sin(angle);
yu(k)=yc(k)+yt(k)*cos(angle);
xl(k)=r(k)+yt(k)*sin(angle);
yl(k)=yc(k)-yt(k)*cos(angle);
end
%plot of airfoil
plot(xu,yu,xlabel('x'),ylabel('y'));
title( ['NACA Airfoil ', NACA]);
hold on
plot(xl,yl,'r')
plot(r,yc,'g')
grid on
axis equal
%--------------------------------------------------------------------------------------%
% Given data vectors X and Y.
% Want to rotate the data through angle "ang" about rotation center Xc, Yc
X = [xl,xu];
Y = [yl,yu];
ang = [254]; % 0.756112778 0.546578176 0.413499657 0.327872784 0.269927858 0.228682627 0.198042808 0.174475668 0.155828787 0.140728889 0.128263734 0.117805904 0.108910765 0.101254972 0.094598036];
% Specify the coordinates of the center of rotation
Xc = 0.25 ; % Rotate about the 1/4 chord point
Yc = 0 ;
% The data is roated in a three-step process
% Step 1) Shift the data to the rotation center
Xs = X - Xc; % shifted data
Ys = Y - Yc;
% Step 2) Rotate the data
Xsr = Xs.*cos(ang) + Ys.*sin(ang); % shifted and rotated data
Ysr = -Xs*sin(ang) + Ys*cos(ang); %
% Step 3) Un-shift the data (back to the original coordinate system)
Xr = Xsr + Xc; % Rotated data
Yr = Ysr + Yc;
hold on
0 comentarios
Respuesta aceptada
David Wilson
el 18 de Abr. de 2019
Editada: David Wilson
el 18 de Abr. de 2019
Does this look better?
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/214705/image.png)
Some (small) changes to your code. I swapped your rotation direction to better follow your example plot. Probably not a good idea to call a variable angle.
c1= 1;
%c1= [0,0.008232831,0.016465661,0.024698492,0.032931323,0.041164153,0.049396984,0.057629815,0.065862645,0.074095476,0.082328307,0.090561137,0.098793968,0.107026798,0.115259629,0.12349246];
s=num2str(5410);
%4 digits
NACA=s;
% m represents first digit out of the scalar
m =str2double(s(1))/100;
%p pulls the second digit out of the scalar
p=str2double(s(2))/10;
%t pulls and represents the third and fourth digit out of the scalar
t=str2double(s(3:4))/100;
% define x
r=linspace(0, c1, 250);
%yt fuction including the coeffiencients
yt =5*t*c1*(.2969*(sqrt(r/c1))+-.1260*(r/c1)+-.3516*(r/c1).^2+.2843*(r/c1).^3+-.1015*(r/c1).^4);
%yt2 =5*t*c2*(.2969*(sqrt(x/c2))+-.1260*(x/c2)+-.3516*(x/c2).^2+.2843*(x/c2).^3+-.1015*(x/c2).^4);
for k = 1:length(r)
if r(k) <= p*c1
yc(k)=m*(r(k)/p^2)*(2*p-(r(k)/c1));
dx(k)=(2*m)/p^2*(p-(r(k)/c1));
elseif r(k) > p*c1
yc(k)=m*((c1-r(k))/(1-p)^2)*(1+(r(k)/c1)-(2*p));
dx(k)=((2*m)/(1-p)^2)*(p-(r(k)/c1));
end
%upper and lower limits of the airfoil (xu,yu) ; (xl,yl)
angle=atan(dx(k));
xu(k)=r(k)-yt(k)*-sin(angle);
yu(k)=yc(k)+yt(k)*cos(angle);
xl(k)=r(k)+yt(k)*sin(angle);
yl(k)=yc(k)-yt(k)*cos(angle);
end
%% plot of airfoil
clf;
plot(xu,yu,xl,yl,r,yc);
xlabel('x'),ylabel('y')
title( ['NACA Airfoil ', NACA]);
grid on; axis equal
%% --------------------------------------------------------------------------------------%
% Given data vectors X and Y.
% Want to rotate the data through angle "ang" about rotation center Xc, Yc
X = [xl,fliplr(xu)]; % watch this
Y = [yl,fliplr(yu)];
% Specify the coordinates of the center of rotation
Xc = 0.25 ; % Rotate about the 1/4 chord point
Yc = 0 ;
% The data is roated in a three-step process
% Step 1) Shift the data to the rotation center
Xs = X - Xc; % shifted data
Ys = Y - Yc;
% Step 2) Rotate the data
angles =[1.047197551 0.756112778 0.546578176 0.413499657 0.327872784 ...
0.269927858 0.228682627 0.198042808 0.174475668 0.155828787 0.140728889 ...
0.128263734 0.117805904 0.108910765 0.101254972 0.094598036];
hold on
for i=1:length(angles)
ang = -angles(i); % in radians ??
Xsr = Xs.*cos(ang) + Ys.*sin(ang); % shifted and rotated data
Ysr = -Xs*sin(ang) + Ys*cos(ang); %
% Step 3) Un-shift the data (back to the original coordinate system)
Xr = Xsr + Xc; % Rotated data
Yr = Ysr + Yc;
plot(Xr, Yr)
end % for
hold off
2 comentarios
David Wilson
el 19 de Abr. de 2019
Editada: David Wilson
el 19 de Abr. de 2019
Like this?
I've rotated each of your 16 profiles by the corresponding 16 angles. I assume this is what you want. By the way, you do have a chord length of zero! Seems a bit strange.
I've rotated the aerofoils about 1/4 chord length of the actual chord. Looking at your plot above, I see that you have probably rotated about the point 1/4 max chord length. It's an easy change to make if that's what you want.
I've also lightly coloured the foils to make them look nicer.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/214815/image.png)
Code is now as below. I've added a structure to contain each of the profiles. This could be in a rectangular matrix, but you might in the future want to add other fields. (BTW, I typically use English spelling, simply to piss some people off.)
%% Rotate NACA aerofoils with adjusting chord lengths
s=num2str(5410); NACA=s; %4 digits
m =str2double(s(1))/100; % m represents first digit out of the scalar
p=str2double(s(2))/10; %p pulls the second digit out of the scalar
%t pulls and represents the third and fourth digit out of the scalar
t=str2double(s(3:4))/100;
% Chord length, but dropping first (zero) entry
c2= [0,0.008232831,0.016465661,0.024698492,0.032931323...
0.041164153,0.049396984,0.057629815,0.065862645...
0.074095476,0.082328307,0.090561137,0.098793968,0.107026798...
0.115259629,0.12349246];
%c2(1) = []; % drop the zero chord length !!
aerofoil = struct('chord',[],'x',[],'y',[],'r',[],'yc',[]); % place holder
for i=1:length(c2)
c1 = c2(i);
r=linspace(0, c1, 250)'; % define x
%yt function including the coefficients
yt =5*t*c1*(.2969*(sqrt(r/c1))+-.1260*(r/c1)+-.3516*(r/c1).^2+.2843*(r/c1).^3+-.1015*(r/c1).^4);
%yt2 =5*t*c2*(.2969*(sqrt(x/c2))+-.1260*(x/c2)+-.3516*(x/c2).^2+.2843*(x/c2).^3+-.1015*(x/c2).^4);
for k = 1:length(r)
if r(k) <= p*c1
yc(k)=m*(r(k)/p^2)*(2*p-(r(k)/c1));
dx(k)=(2*m)/p^2*(p-(r(k)/c1));
elseif r(k) > p*c1
yc(k)=m*((c1-r(k))/(1-p)^2)*(1+(r(k)/c1)-(2*p));
dx(k)=((2*m)/(1-p)^2)*(p-(r(k)/c1));
end
%upper and lower limits of the airfoil (xu,yu) ; (xl,yl)
angle=atan(dx(k));
xu(k)=r(k)-yt(k)*-sin(angle);
yu(k)=yc(k)+yt(k)*cos(angle);
xl(k)=r(k)+yt(k)*sin(angle);
yl(k)=yc(k)-yt(k)*cos(angle);
end % for k
aerofoil(i).chord = c1;
aerofoil(i).x = [xl,fliplr(xu)]; aerofoil(i).y = [yl,fliplr(yu)];
aerofoil(i).r = r; aerofoil(i).yc = yc;
end
%% plot all airfoils (un-rotated)
clf; hold on
for i=1:length(aerofoil)
x = aerofoil(i).x; y = aerofoil(i).y;
r = aerofoil(i).r; yc = aerofoil(i).yc;
plot(x,y, r, yc, '--')
% plot(xu,yu,xl,yl,r,yc);
end
hold off
xlabel('x'),ylabel('y')
title( ['NACA Airfoil ', NACA]);
grid on; axis equal
%% --------------------------------------------------------------------------------------%
Yc = 0 ; % always rotate about ycenter = 0;
% Step 2) Rotate the data
angles =[1.047197551 0.756112778 0.546578176 0.413499657 0.327872784 ...
0.269927858 0.228682627 0.198042808 0.174475668 0.155828787 0.140728889 ...
0.128263734 0.117805904 0.108910765 0.101254972 0.094598036];
clf;
cmap = winter(length(angles));
hold on
for i=length(aerofoil):-1:1
% Given data vectors X and Y.
X = aerofoil(i).x; Y = aerofoil(i).y;
r = aerofoil(i).r; yc = aerofoil(i).yc;
% Want to rotate the data through angle "ang" about rotation center Xc, Yc
% Specify the coordinates of the center of rotation
Xc = 0.25*r(end) ; % Rotate about the 1/4 chord point
% The data is roated in a three-step process
% Step 1) Shift the data to the rotation center
Xs = X - Xc; % shifted data
Ys = Y - Yc;
ang = -angles(i); % in radians ??
Xsr = Xs.*cos(ang) + Ys.*sin(ang); % shifted and rotated data
Ysr = -Xs*sin(ang) + Ys*cos(ang); %
% Step 3) Un-shift the data (back to the original coordinate system)
Xr = Xsr + Xc; % Rotated data
Yr = Ysr + Yc;
plot(Xr, Yr, 'color',cmap(i,:),'linewidth',1);
h=patch(Xr, Yr, cmap(i,:),'FaceAlpha',0.2);
end % for
hold off
axis equal
grid
Más respuestas (0)
Ver también
Categorías
Más información sobre Airfoil tools en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!