how can we linearise?

19 visualizaciones (últimos 30 días)
Burhan Elaldi
Burhan Elaldi el 26 de Abr. de 2019
Linearise the given nonlinear equation and then apply linear least-squares regression to find the equation
for the regression line. Plot the linearised data set together with the regression line. Determine Sr (the sum
of squares of residuals around the regression line) and r2 (the corresponding coefficient of determination).
clc
clear all
close all
syms x y a b A B a0 a1
%given dependent and independent datas
xdata=[0.1 0.2 0.4 0.6 0.9 1.3 1.5 1.7 1.8];
ydata=[0.75 1.25 1.45 1.25 0.85 0.55 0.35 0.28 0.18];
sr=ydata-(a.*xdata.*exp(b.*xdata))
%Finding the values of Sr,St,a,b,r-square
A=diff(sr,a0);
B=diff(sr,a1);
sr=sum(ydata-(a.*xdata.*exp(b.*xdata)))
st=sum((ydata-mean(ydata)).^2);
r2=(st-sr)./st;
display(sr)
display(r2)
display(st)

Respuestas (0)

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by