Data representation in a specific format
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Saugata Bose
el 28 de Abr. de 2019
Comentada: Walter Roberson
el 29 de Abr. de 2019
Hi
I am working on a large data set which I need to convert in a specific format for further processing. I am looking for your advice in this regard.
Sample data
A=[0.99 -0.99
1 -1
0.55 -0.55]
Sample output:
val(:,:,1,1)=0.99
val(:,:,2,1)=-0.99
val(:,:,1,2)=1
val(:,:,2,2)=-1
val(:,:,1,3)=0.55
val(:,:,2,3)=-0.55
During working on this, I found a code inside a cnn toolbox of matlab r2018b
function dummifiedOut = dummify(categoricalIn)
% iDummify Convert a categorical input into a dummified output.
%
% dummifiedOut(1,1,i,j)=1 if observation j is in class i, and zero
% otherwise. Therefore, dummifiedOut will be of size [1, 1, K, N],
% where K is the number of categories and N is the number of
% observation in categoricalIn.
% Copyright 2015-2016 The MathWorks, Inc.
numObservations = numel(categoricalIn);
numCategories = numel(categories(categoricalIn));
dummifiedSize = [1, 1, numCategories, numObservations];
dummifiedOut = zeros(dummifiedSize);
categoricalIn = iMakeHorizontal( categoricalIn );
idx = sub2ind(dummifiedSize(3:4), int32(categoricalIn), 1:numObservations);
dummifiedOut(idx) = 1;
end
function vec = iMakeHorizontal( vec )
vec = reshape( vec, 1, numel( vec ) );
end
Can we modify this block of code in such a way to produce the sample output?
I am looking for your advice.
thanks,
2 comentarios
Walter Roberson
el 28 de Abr. de 2019
You write to the same location multiple times.
Are your two values always exact negatives of each other?
Respuesta aceptada
Walter Roberson
el 28 de Abr. de 2019
val = repmat(permute(A, [4 3 2 1]), num_rows, num_cols, 1, 1);
where num_rows is the number of rows you want for val(:,:,1,1) and num_cols is the number of columns you want for val(:,:,1,1)
2 comentarios
Walter Roberson
el 29 de Abr. de 2019
A = [0.99 -0.99 0 0
1 -1 0 0
0.55 -0.55 0 0
]
together with the code I posted.
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!