Breast Density in Mammography Dicom Images
    10 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Ann G
 el 15 de Mayo de 2019
  
    
    
    
    
    Editada: Walter Roberson
      
      
 el 27 de Jul. de 2024
            Is there a way to extract the breast density of a mammography through Matlab code?
1 comentario
Respuesta aceptada
  Said Pertuz
      
 el 14 de Nov. de 2019
        I hope is not too late an answer. Please take a look at the following tool:https://www.mathworks.com/matlabcentral/fileexchange/73360-breast-density-segmentation. 
Beware that this implementation has been tested on digital mammograms (such as those from the INbreast dataset) and has not been tested on digitized mammograms (e.g. MIAS).
Más respuestas (1)
  Doaa
 el 27 de Jul. de 2024
        
          2 comentarios
  Doaa
 el 27 de Jul. de 2024
				
      Editada: Walter Roberson
      
      
 el 27 de Jul. de 2024
  
			% Load the mammogram image
img = imread('mammogram.jpg');
% Display the original image
figure;
imshow(img);
title('Original Mammogram Image');
% Convert the image to grayscale if it is not already
if size(img, 3) == 3
 img = rgb2gray(img);
end
% Display the grayscale image
figure;
imshow(img);
title('Grayscale Mammogram Image');
% Apply median filter to reduce noise
filtered_img = medfilt2(img);
% Display the filtered image
figure;
imshow(filtered_img);
title('Filtered Mammogram Image');
% Binarize the image using a threshold
level = graythresh(filtered_img);
bw = imbinarize(filtered_img, level);
% Display the binary image
figure;
imshow(bw);
title('Binary Mammogram Image');
% Calculate the breast density
density = sum(bw(:)) / numel(bw) * 100;
% Display the breast density
fprintf('Breast density: %.2f%%\n', density);
% Classify the breast density
if density < 25
 density_type = 'Fatty';
elseif density < 50
 density_type = 'Scattered';
elseif density < 75
 density_type = 'Heterogeneously dense';
else
 density_type = 'Extremely dense';
end
fprintf('Breast density type: %s\n', density_type);
  Doaa
 el 27 de Jul. de 2024
				
      Editada: Walter Roberson
      
      
 el 27 de Jul. de 2024
  
			% Load the mammogram image
img = imread('mammogram.jpg');
% Display the original image
figure;
imshow(img);
title('Original Mammogram Image');
% Convert the image to grayscale if it is not already
if size(img, 3) == 3
    img = rgb2gray(img);
end
% Display the grayscale image
figure;
imshow(img);
title('Grayscale Mammogram Image');
% Apply median filter to reduce noise
filtered_img = medfilt2(img);
% Display the filtered image
figure;
imshow(filtered_img);
title('Filtered Mammogram Image');
% Binarize the image using a threshold
level = graythresh(filtered_img);
bw = imbinarize(filtered_img, level);
% Display the binary image
figure;
imshow(bw);
title('Binary Mammogram Image');
% Calculate the breast density
density = sum(bw(:)) / numel(bw) * 100;
% Display the breast density
fprintf('Breast density: %.2f%%\n', density);
% Classify the breast density
if density < 25
    density_type = 'Fatty';
elseif density < 50
    density_type = 'Scattered';
elseif density < 75
    density_type = 'Heterogeneously dense';
else
    density_type = 'Extremely dense';
end
fprintf('Breast density type: %s\n', density_type);
Ver también
Categorías
				Más información sobre Image Filtering and Enhancement en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!