fitting a curve (3D) to pointcloud data

25 visualizaciones (últimos 30 días)
Rupert Schaffarz
Rupert Schaffarz el 17 de Mayo de 2019
Respondida: Amir Suhail el 1 de En. de 2020
Hello
I have a pointcloud from which I want to extract the border of a street. I have manually created sampling datapoints using the datacursor.
Now I have a list of x, y, z points from which I want to derive a curve (road boarder).
What is the best method of making such a curve given a list of x y z points. It should be smooth.
Thanks for any help!

Respuesta aceptada

Are Mjaavatten
Are Mjaavatten el 20 de Mayo de 2019
Assuming that the points are listed in sequence along your curve, you can express x, y, and z as functions of the (approximate) position along the curve, using splines. To illustrate and test, I first generate a set of points to represent your point cloud. The points are randomly distributed along a 3D curve:
t = sort(rand(50,1))*10;
x = sin(t);
y = cos(1.7*t);
z = sin(t*0.22);
plot3(x,y,z,'*')
grid on
Of course, you do not know the parameter t, so we must create a parameter vector s, based on the euclidean distance between points:
s = zeros(size(x));
for i = 2:length(x)
s(i) = s(i-1) + sqrt((x(i)-x(i-1))^2+(y(i)-y(i-1))^2+(z(i)-z(i-1))^2);
end
Now you have x, y, and z as functions of s, and you can generate splines passing through the points:
ss = linspace(0,s(end),100);
xx = spline(s,x,ss);
yy = spline(s,y,ss);
zz = spline(s,z,ss);
hold on
plot3(xx,yy,zz)
hold off
If there is noise in your data and you want to smooth the curve, consider using polyfit / polyval instead of spline.
If your points are not in sequence, the problem gets MUCH harder to automate, and I recommend that you sequence them manually.
  5 comentarios
Are Mjaavatten
Are Mjaavatten el 20 de Mayo de 2019
Editada: Are Mjaavatten el 20 de Mayo de 2019
This will work relativey well with your data:
rb = load('road_boarders');
% Right border:
x = rb.right_border_sorted(:,1);
y = rb.right_border_sorted(:,2);
z = rb.right_border_sorted(:,3);
s = zeros(size(x));
for i = 2:length(x)
s(i) = s(i-1) + sqrt((x(i)-x(i-1))^2+(y(i)-y(i-1))^2+(z(i)-z(i-1))^2);
end
px = polyfit(s,x,3);
py = polyfit(s,y,2);
pz = polyfit(s,z,2);
ss = linspace(0,s(end),100);
% Inspect fit:
figure(1);
subplot(3,1,1);plot(s,x,ss,polyval(px,ss));
subplot(3,1,2);plot(s,y,ss,polyval(py,ss));
subplot(3,1,3);plot(s,z,ss,polyval(pz,ss));
figure(2)
plot3(x,y,z,'.r',polyval(px,ss),polyval(py,ss),polyval(pz,ss),'b')
grid on
% Left border:
x = rb.left_border_subset_sorted(:,1);
y = rb.left_border_subset_sorted(:,2);
z = rb.left_border_subset_sorted(:,3);
s = zeros(size(x));
for i = 2:length(x)
s(i) = s(i-1) + sqrt((x(i)-x(i-1))^2+(y(i)-y(i-1))^2+(z(i)-z(i-1))^2);
end
px = polyfit(s,x,3);
py = polyfit(s,y,2);
pz = polyfit(s,z,2);
ss = linspace(0,s(end),100);
figure(3);
subplot(3,1,1);plot(s,x,ss,polyval(px,ss));
subplot(3,1,2);plot(s,y,ss,polyval(py,ss));
subplot(3,1,3);plot(s,z,ss,polyval(pz,ss));
% Both borders in the same plot:
figure(2);
hold on
plot3(x,y,z,'.r',polyval(px,ss),polyval(py,ss),polyval(pz,ss),'b')
axis equal
If the road has more curves, you could try with higher-order polynomials. However, this approach is not likely to handle more than one or two turns. The curve fitting and spline toolboxes have functions for generating smoothed splines, which could probably do the job. I cannot test this, as I do not have access to those toolboxes.
Rupert Schaffarz
Rupert Schaffarz el 20 de Mayo de 2019
Dear Are!
Thank you so much. It works perfectly.
Again.. I am very grateful for your help!
Cheers
Rupert

Iniciar sesión para comentar.

Más respuestas (3)

Amir Suhail
Amir Suhail el 1 de En. de 2020
Hi,
I have similar question. I want to take equdistant points (say N points ) on smooth approximating curve through my data points (x,y,z).

jigsaw
jigsaw el 21 de Sept. de 2019
Are Mjaavatten's answer works great for me. The following lines can be modified a bit to be more concise. Replace the
s = zeros(size(x));
for i = 2:length(x)
s(i) = s(i-1) + sqrt((x(i)-x(i-1))^2+(y(i)-y(i-1))^2+(z(i)-z(i-1))^2);
end
with
s = [0;cumsum(flip(sqrt((x(end:-1:2)-x(end-1:-1:1)).^2+(y(end:-1:2)-y(end-1:-1:1)).^2+(z(end:-1:2)-z(end-1:-1:1)).^2)))];

deb.P
deb.P el 8 de Nov. de 2019
i have a question: i have fitted a curve to my 3 variable data set according to the code Are Mjaavatten has mentioned. Now i want to know what is the equation of the fitted curve.
  1 comentario
Are Mjaavatten
Are Mjaavatten el 9 de Nov. de 2019
If you have used the polyfit version, px, py and pz give the coefficients for the fitted polynomials in s. See the docmentation for polyfit for details.
If you used spline, the expressions are piecewise cubic spline polynomials. Se the documentation for spline for details.

Iniciar sesión para comentar.

Categorías

Más información sobre Vehicle Scenarios en Help Center y File Exchange.

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by