How to using bayesopt function for a GP model

3 visualizaciones (últimos 30 días)
zhikun ruan
zhikun ruan el 20 de Jun. de 2019
Comentada: zhikun ruan el 22 de Jun. de 2019
Hi, I need to use bayesopt function for a GP model but it returns NaN and Error. I used the code below and the x is a 2 * n matrix and y is a 1*n matrix. Can anyone help me?
num = optimizableVariable('n',[1,10],'Type','integer');
dst = optimizableVariable('dst',{'chebychev','euclidean','minkowski'},'Type','categorical');
results = bayesopt(@(params)fitrgp(x',y,'Sigma',0.1),[num,dst],'Verbose',0,...
'AcquisitionFunctionName','expected-improvement-plus')

Respuesta aceptada

Don Mathis
Don Mathis el 21 de Jun. de 2019
It looks like you're basing your code on this example, which is a good starting point: https://www.mathworks.com/help/stats/bayesopt.html?searchHighlight=bayesopt&s_tid=doc_srchtitle#bvamydy-2
But it seems you removed some important parts, like the call to kfoldLoss for example.
I would recommend starting with that example and making incremental changes to turn it into a solution to your problem. And reading the bayesopt documentation.
  1 comentario
zhikun ruan
zhikun ruan el 22 de Jun. de 2019
Thanks Don. I found your answers in other problems are very helpful. Thank you very much.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by