How can I vectorize this function with nested FOR loop?

4 visualizaciones (últimos 30 días)
abtin irani
abtin irani el 2 de Jul. de 2019
Editada: Matt J el 5 de Jul. de 2019
I have two for loops.L is one matrix of random numbers between 0,1 with dimension 24*100000.I want to vectorize it but i can't. because current code is very slow and take a long time.please help me.
K=zeros(100000,1);
T=zeros(100000,1);
for i=1:100000
for j=1:100000
K(j,1)=exp(-4*norm(L(:,i)-L(:,j))^2/norm(L(:,i))^2);
end
T(i,:)=sum(K)-1;
end
  2 comentarios
Bob Thompson
Bob Thompson el 2 de Jul. de 2019
(L(:,i)-L(:,j))
This is what is going to make it difficult to vectorize. I believe there is a command to calculate this for you, but I'm not sure what exactly it is. It might be easier to do some research for this specifically, rather than the vectorization.
Jan
Jan el 2 de Jul. de 2019
Editada: Jan el 2 de Jul. de 2019
Why do you want to vectorize the code? There is no general benefit in doing this. Does the current code run too slow? Then an acceleration is the way to go. Vectorizing can improve the speed, but this is not in general.
To optimize the code, we need the chance to run it. Without meaningful input arguments, this is hard. So please provide L.
norm(x)^2 calculates an expensive square root only to square the result afterwards.
Do oyu have the parallel processing toolbox? A parfor might be very useful.

Iniciar sesión para comentar.

Respuesta aceptada

Matt J
Matt J el 2 de Jul. de 2019
Editada: Matt J el 2 de Jul. de 2019
Using mat2tiles
chunksize=10000;
Lc=mat2tiles(L.',[chunksize,24]);
normL=mat2tiles(vecnorm(L,2,1), [1, chunksize]);
N=numel(Lc);
Tc=cell(N);
for i=1:N
for j=1:N
E=pdist2(Lc{i},Lc{j})./normL{j};
Tc{i,j}=sum( exp(-4*E.^2) ,1);
end
end
T=sum( cell2mat(Tc) ,1).'-1;
  18 comentarios
abtin irani
abtin irani el 4 de Jul. de 2019
so,what can i do if i don't use pdist2.is there any other solution instead of pdist2 that doesn't give this error? i want one solution for chunksize=1000000. thank you for your answers.
Matt J
Matt J el 4 de Jul. de 2019
Editada: Matt J el 5 de Jul. de 2019
Well, maybe the question to ask is, why are you making the chunksize larger, when you toldu us that the code already worked when the chunksize was just 10,000? Why change/fix something that is not broken?

Iniciar sesión para comentar.

Más respuestas (1)

Jan
Jan el 4 de Jul. de 2019
n = 1000;
L = rand(24, n);
T = zeros(n, 1);
for i=1:n
K = exp(-4*sum((L(:,i) - L) .^ 2, 1) ./ sum(L(:,i).^2, 1));
T2(i) = sum(K, 2) - 1;
end
This is 100 times faster than the original version for n=1000.
With parfor instead of for a further acceleration is possible.
To my surprise the above code is faster than this, which omits the repeated squaring:
T = zeros(n,1);
L2 = L .^ 2;
for i=1:n
K = exp(-4*sum((L2(:,i) - 2*L(:,i).*L + L2), 1) ./ sum(L2(:,i), 1));
T(i) = sum(K, 2)-1;
end
  2 comentarios
abtin irani
abtin irani el 4 de Jul. de 2019
excuse me i got this error. Error using .*
Matrix dimensions must agree.
Error in Untitled8 (line 33)
K=exp(-4*sum((L2(:,i) - 2*L(:,i).*L + L2), 1) ./ sum(L2(:,i), 1));
Jan
Jan el 4 de Jul. de 2019
You use Matlab < R2016b. Then:
K = exp(-4*sum((L2(:,i) - bsxfun(@times, 2*L(:,i), L) + L2), 1) ...
./ sum(L2(:,i), 1));
But the first version seems to be faster.

Iniciar sesión para comentar.

Categorías

Más información sobre Parallel Computing en Help Center y File Exchange.

Productos


Versión

R2015a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by