Unexpected image size: All images must have the same size.

14 visualizaciones (últimos 30 días)
Hi, I'm having some problems with a bench of chest xray images. I tryed to use the code from the link below, but it did not work.
Error using trainNetwork (line 165)
Unexpected image size: All images must have the same size.
Error in chestXray1 (line 49)
net = trainNetwork(imdsTrain,layers,options);
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',3, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
  8 comentarios
Andre Brandao
Andre Brandao el 9 de Jul. de 2019
is missing width or height or #channels
Geoff Hayes
Geoff Hayes el 9 de Jul. de 2019
try putting a breakpoint at the line
allfiles = fullfile({dinfo.folder}, {dinfo.name});
and then run the code. When the debugger pauses at thisline, step through the subsequent lines. What is thisfile set to? What is thisinfo?

Iniciar sesión para comentar.

Respuesta aceptada

Dheeraj Singh
Dheeraj Singh el 5 de Ag. de 2019
You can use augmentedImageDataStore to resize all images to same size.
Use the following code for your problem:
dataChest = fullfile('/Users/andrebr4/Documents/MATLAB/chestXray/chest_xray');
imds = imageDatastore(dataChest, ...
'IncludeSubfolders',true, ...
'LabelSource','foldernames');
%% Dividir o conjunto de dados em cada categoria
numTrainingFiles = 750;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainingFiles,'randomize');
%%%%%%%code for resizing
inputSize=[224 224 1];
imdsTrain=augmentedImageDatastore(inputSize, imdsTrain,'ColorPreprocessing','rgb2gray');
imdsValidation=augmentedImageDatastore(inputSize, imdsValidation,'ColorPreprocessing','rgb2gray');
%% Configurar a rede neural
inputSize = [224 224 1];
numClasses = 2;
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%% Opções de treino
options = trainingOptions('sgdm', ...
'MaxEpochs',5, ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
%% Treinar a rede neural
net = trainNetwork(imdsTrain,layers,options);
%% Executar rede treinada no conjunto de teste
YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;
%% Calcular a precisão
accuracy = sum(YPred == YValidation)/numel(YValidation)
  3 comentarios
Mohamed Nasr
Mohamed Nasr el 28 de Abr. de 2020
Hi i have the same problem but with 3channels what i do ?
Mohamed Nasr
Mohamed Nasr el 28 de Abr. de 2020
and make error in YPred = classify(net,imdsValidation);
YValidation = imdsValidation.Labels;

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Productos


Versión

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by