DICOM imageとDeep Learning
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
masakazu sugino
el 9 de Jul. de 2019
Comentada: masakazu sugino
el 11 de Jul. de 2019
DICOM画像をdeeplearningで学習させているときに、生じる問題があるのでしょうか。
png画像に変換したほうがいいのでしょうか。
以下は自分で作成したdeep learningの分類に関するスクリプトです。
currentdirectory = pwd;
imds = imageDatastore(fullfile(currentdirectory, categories),'IncludeSubfolders',true,'FileExtensions','.dcm','LabelSource', 'foldernames','ReadFcn',@dicomread);
% 検証枚数を増やす
numTrainFiles = 1064;
[imdsTrain,imdsValidation] = splitEachLabel(imds,numTrainFiles,'randomize');
% 分類器の作成
layers = [
imageInputLayer([30 30 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',1)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',1)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
dropoutLayer(0.2)
fullyConnectedLayer(9)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MiniBatchSize',128, ...
'InitialLearnRate',0.001, ...
'MaxEpochs',30, ...
'Shuffle','every-epoch', ...
'ValidationData',imdsValidation, ...
'ValidationFrequency',50, ...
'Verbose',false, ...
'Plots','training-progress');
net17= trainNetwork(imdsTrain,layers,options);
YPred = classify(net17,imdsValidation);
YValidation = imdsValidation.Labels;
accuracy = sum(YPred == YValidation)/numel(YValidation);
誤り等あったら教えていただきたいです。
0 comentarios
Respuesta aceptada
Kazuya
el 9 de Jul. de 2019
コードを見るだけでは何とも分かりませんが、DICOM であることによる問題は特になさそうです。
こちらも参考になりましたら:
0 comentarios
Más respuestas (1)
masakazu sugino
el 9 de Jul. de 2019
2 comentarios
Kazuya
el 10 de Jul. de 2019
特に負であること自体が問題になることはないとは考えていますが、何か問題ありそうですか?実行した結果その問題を示唆するような現象が起こっているとか・・?
Ver también
Categorías
Más información sobre イメージを使用した深層学習 en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!