Neural Network - R value equal 1- Over-fitting or not?

3 visualizaciones (últimos 30 días)
Mustafa Al-Nasser
Mustafa Al-Nasser el 5 de Ag. de 2019
Comentada: Image Analyst el 23 de Jun. de 2022
Dear All;
I built a neural network model for regression as shown below but I got an R value equal 0.99998 which is almost 1. Does this indicate that I have overfitting? If yes, then how can I prevent or avoid overfitting?
% Read input and output vaules
data=readtable ('GOSP_DATA_Final.xlsx','sheet','Data');
I1=data.Ta;
I2=data.LPPT_P;
I=[I1 I2];
I=I';
T=data.LR;
T=T';
% Normalization between -1 and 1
[I,ps] = mapminmax(I);
[T,ts] = mapminmax(T);
% Building Network
h= 10;
net= fitnet(h);
[net,tr] = train(net, I, T);
% Teting Neural networl
tInd= tr.testInd;
tstOutput=net(I(:,tInd));
tstOutput = mapminmax('reverse',tstOutput,ts);
T(tInd)= mapminmax('reverse',T(tInd),ts);
tstperformance = perform(net, T(tInd), tstOutput)
figure (1),
plotregression(T(tInd),tstOutput);

Respuestas (1)

Srivardhan Gadila
Srivardhan Gadila el 12 de Ag. de 2019
If the calculated R value is almost same for all the three Train, Test and Validation sets then your model is no near to Overfitting. If you observe that the calculated R for training set is more than that for validation and test sets then your network is Over fitting on the training set. You can refer to Improve Shallow Neural Network Generalization and Avoid Overfitting.
  1 comentario
Image Analyst
Image Analyst el 23 de Jun. de 2022
@Srivardhan Gadila, they will all be different, always. I think the question is : how much different can the R of the Training set be from the R of the Validation or Test set before overfitting begins to be a concern?

Iniciar sesión para comentar.

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by