Matlab fit to three dimensions function

8 visualizaciones (últimos 30 días)
standy
standy el 28 de Ag. de 2019
Comentada: the cyclist el 28 de Ag. de 2019
Hi
I got three input vectors: x1, x2, x3 and output vectory y. How do i fit to my custom function?
y=a0+a1*x1+a2*x2+a3*x3+a11*x1^2+a22*x2^2+a33*x3^2+a12*x1*x2+a13*x1*x3+a23*x2*x3
Obviously I want to get parameters a1, a2, ...
For two variables (x1, x2) i can do it like:
f = fit([x1, x2], y, 'poly33');
But I'm struggling to do that for the function above.
Any help appreciated.
  2 comentarios
the cyclist
the cyclist el 28 de Ag. de 2019
Do you also have the Statistics and Machine Learning Toolbox available, or only the Curve Fitting Toolbox?
standy
standy el 28 de Ag. de 2019
Yes, i got this toolbox.

Iniciar sesión para comentar.

Respuestas (2)

Bruno Luong
Bruno Luong el 28 de Ag. de 2019
Editada: Bruno Luong el 28 de Ag. de 2019
n = length(y);
A = [ones(n,1) x1(:) x2(:) x3(:) x1(:).^2 x2(:).^2 x3(:).^2 x1(:).*x2(:) x1(:).*x3(:) x2(:).*x3(:)] \ y(:)

the cyclist
the cyclist el 28 de Ag. de 2019
Editada: the cyclist el 28 de Ag. de 2019
I would do it like this:
% Set the random number generator seed, for reproducibility
rng default
% Create some random data
N = 1000;
x1 = randn(N,1);
x2 = randn(N,1);
x3 = randn(N,1);
% Create a response variable with known coefficients, and some noise
y = 2 + 3*x1 + 5*x2 + 7*x3 ...
+ 11*x1.^2 + 13*x2.^2 + 17*x3.^2 ...
+ 19*x1.*x2 + 23*x1.*x3 + 29*x2.*x3 ...
+ 31*randn(N,1);
% Fit a quadratic model
mdl = fitlm([x1 x2 x3],y,'quadratic')
% % The above is equivalent to the following model, written out in full Wilkinson notation
% mdl = fitlm([x1,x2,x3],y,'y ~ x1 + x2 + x3 + x1^2 + x2^2 + x3^2 + x1:x2 + x1:x3 + x2:x3');
Almost all of this code is me creating the data, to illustrate everything. Since you have the data already, you should only need
mdl = fitlm([x1 x2 x3],y,'quadratic')
The resulting model object, mdl, has methods for lots of information about the model fit.
  4 comentarios
standy
standy el 28 de Ag. de 2019
Ahhh
Makes sense now. I got the output like:
Linear regression model:
y ~ 1 + x1*x2 + x1*x3 + x2*x3 + x1^2 + x2^2 + x3^2
Estimated Coefficients:
Estimate SE tStat pValue
__________ __________ ________ _______
(Intercept) 1.4267 1.1233 1.2701 0.23281
x1 -0.015338 0.024769 -0.61922 0.54962
x2 -0.90665 3.3137 -0.27361 0.78995
x3 0 0 NaN NaN
x1:x2 0.0031125 0.012077 0.25772 0.80185
x1:x3 0 0 NaN NaN
x2:x3 0.765 3.0553 0.25038 0.80736
x1^2 6.8008e-05 0.00011935 0.56982 0.58137
x2^2 0 0 NaN NaN
x3^2 0 0 NaN NaN
Does it mean that a0=1, a1=-0.015338 etc?
the cyclist
the cyclist el 28 de Ag. de 2019
Yes

Iniciar sesión para comentar.

Categorías

Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by