Solving very stiff system of ODE's
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi
I have the following system of ODEs (a very stiff system!):
eoms = @(t,x) [
3.9e3 + 4.8e4*x(3) - 3.9e3*0.02*x(1);
3.9e3*0.2*x(1) - x(2)*3.3e3;
2.2e3*x(2) - 4.8e4*x(3) + heaviside(t-1)*x(5)*2.8e7;
1.1e3*x(2) - heaviside(t-1)*4.7e7*x(4);
heaviside(t-1)*(4.7e4*x(4) - 2.8e7*x(5)-9.0e6*x(5))];
x0 = [0 0 0 0 0];
tspan = [0 1];
[t, x] = ode23s(eoms, tspan, x0);
figure(1)
plot(t, x(:, 1))
When I run the script, I get the message: "Failure at t=1.000000e+000. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (3.552714e-015) at time t."
I'm not quite sure if I can do anything about it, but I thought that I should ask in here first. The timestep can't get any lower -- and I am already using a solver suitable for stiff systems. Do I have any options left?
Best, Niles.
0 comentarios
Respuestas (1)
Ver también
Categorías
Más información sobre Ordinary Differential Equations en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!