What is the best non-linear least square fitting method that will parameter error in addition to parameters?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Joseph
el 16 de Oct. de 2019
Hi,
I have an array A,
A=[296/296 0.08485182/0.08485182
296/463 0.070180715/0.08485182
296/681 0.055920654/0.08485182
296/894 0.042669196/0.08485182
296/1098 0.03980615/0.08485182
];
now i have fitted array A to an objective function objfcn = @(b,x) b(1).*x.^b(2) + b(3).*x.^b(4); as below:
B0 = ones(4,1);
[B,rsdnrm] = fminsearch(@(b) norm(A(:,2) - objfcn(b,A(:,1))), B0);
fprintf(1, 'c_1 = %12.6f\nc_2 = %12.6f\nn_1 = %12.6f\nn_2 = %12.6f\n', B)
and i am satisfied with the fit. However, fminsearch method does not give errors on parameters (b(1),b(2),b(3),b(4)). I tried other methods such as ''lsqnonlin'' and "lsqcurvefit ", but they do not reproduce the same parameters that i obtain from fminsearch. I was wondering if anyone knows a robust nonlinear least square fit method that is able to estimate parameter error?
Thank you all
0 comentarios
Respuesta aceptada
Star Strider
el 16 de Oct. de 2019
2 comentarios
Star Strider
el 17 de Oct. de 2019
My pleasure.
If you prefer the fminsearch parameter estimates, use those as the initial parameter estimates for nlinfit or fitnlm. You can do the same with ga (genetic algorithm) optimisation parameter estimates, that searches the entire parameter space for the best parameter estimates.
Más respuestas (0)
Ver también
Categorías
Más información sobre Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!