Diagonal matrices with spdiags

21 visualizaciones (últimos 30 días)
Matthew Hunt
Matthew Hunt el 25 de Oct. de 2019
Comentada: Matthew Hunt el 25 de Oct. de 2019
I'm working on a numerical solution to an equation and as part of this I have to solve a matrix solution. The system of equations in a tridiagonal matrix I have been informed that there is a routine called spdiags which allows me access to specialised solution/inversing routines which should speed up my code.
The code I use is:
s=0.12;
N_r=30;
r=linspace(0,1,N_r)';
dr=r(2);
r_plus=r+0.5*dr;
r_minus=r-0.5*dr;
a_plus=s*r_plus(1:end-1).^2;
a_minus=s*r_minus(1:end-1).^2;
a=-(r.^2+s*(r_plus.^2+r_minus.^2));
A=diag(a_plus,1)+diag(a)+diag(a_minus,-1);
A(1,1)=-1;A(1,2)=1;
A(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
This provides the matrix that I want. I can run the code and it's pretty fast but I want to see that if I define the A matrix as a spdiags matrix:
B_plus=s*r_plus.^2;
B_minus=s*r_minus.^2;
B=spdiags([B_minus a B_plus],-1:1,N_r,N_r);
B(1,1)=-1;B(1,2)=1;
B(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
Now hopefully, these should yield the same matrix, but they don't. What am I doing wrong?

Respuesta aceptada

Matt J
Matt J el 25 de Oct. de 2019
Editada: Matt J el 25 de Oct. de 2019
s=0.12;
N_r=30;
r=linspace(0,1,N_r)';
dr=r(2);
r_plus=r+0.5*dr;
r_minus=r-0.5*dr;
a_plus=s*r_plus(1:end-1).^2;
a_minus=s*r_minus(1:end-1).^2;
a=-(r.^2+s*(r_plus.^2+r_minus.^2));
D=[[a_minus(:);0], a(:), [0;a_plus(:)]]; %<---changed
B=spdiags(D,-1:1,N_r,N_r); %<--changed
B(1,1)=-1;B(1,2)=1;
B(N_r,N_r-1)=s*(r_plus(N_r)^2+r_minus(N_r)^2);
  5 comentarios
Matt J
Matt J el 25 de Oct. de 2019
Editada: Matt J el 25 de Oct. de 2019
Notice how I specified the upper diagonal with a_plus pre-padded by a zero:
[0;a_plus(:)]
and conversely for a_minus.
The behavior is different depending on whether have you have more rows than columns or vice versa
Matthew Hunt
Matthew Hunt el 25 de Oct. de 2019
So I tried out your code, and it changes the solution of my equation which is not something I expected. It sped up the code by a factor of 2 which isn't bad. However, it completely changed the solution of the equation. So I'm not too sure what's going on.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by