Comparing Matrices in a Struct
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Chris Dan
el 27 de Oct. de 2019
Editada: per isakson
el 10 de Nov. de 2019
Hello Guys, I am new to MATLAB, I have some matrices in a struct more like an array of arrays.
I want to compare their sizes and see if they are equal or not.
and how to make them equal to the biggest matrice, maybe by adding zeros to the smaller matrices.
I am attaching a picture
0 comentarios
Respuesta aceptada
per isakson
el 28 de Oct. de 2019
Editada: per isakson
el 8 de Nov. de 2019
Try this
S(1).model_data = rand( 4, 10 );
S(2).model_data = rand( 2, 10 );
S(3).model_data = rand( 3, 11 );
Out = cssm_( S );
function Out = cssm_( S )
sz(1) = max( arrayfun( @(s) size( s.model_data, 1 ), S ) );
sz(2) = max( arrayfun( @(s) size( s.model_data, 2 ), S ) );
Out = struct( 'model_data', repmat( {nan(sz)}, 1,numel(S) ) );
for jj = 1 : numel(S)
sz = size(S(jj).model_data);
Out(jj).model_data(1:sz(1),1:sz(2)) = S(jj).model_data;
end
end
In response to comment
This will handle sparse, test it. ( cssm_ assumes that all values of data_model are either full or sparse.)
S(1).model_data = sparse( rand( 4, 10 ) );
S(2).model_data = sparse( rand( 2, 10 ) );
S(3).model_data = sparse( rand( 3, 11 ) );
Out = cssm_( S );
function Out = cssm_( S )
sz(1) = max( arrayfun( @(s) size( s.model_data, 1 ), S ) );
sz(2) = max( arrayfun( @(s) size( s.model_data, 2 ), S ) );
if issparse( S(1).model_data )
Out = struct( 'model_data', repmat( {sparse(nan(sz))}, 1,numel(S) ) );
else
Out = struct( 'model_data', repmat( {nan(sz)}, 1,numel(S) ) );
end
for jj = 1 : numel(S)
sz = size(S(jj).model_data);
Out(jj).model_data(1:sz(1),1:sz(2)) = S(jj).model_data;
end
end
Version 3 in response to a later comment
S(1,1).model_data = sparse( rand( 4, 3 ) );
S(1,2).model_data = sparse( rand( 2, 3 ) );
S(1,3).model_data = sparse( rand( 3, 5 ) );
Out = cssm_( S );
function Out = cssm_( S )
sz(1) = max( arrayfun( @(s) size( s.model_data, 1 ), S ) );
sz(2) = max( arrayfun( @(s) size( s.model_data, 2 ), S ) );
if issparse( S(1).model_data )
Out = struct( 'model_data', repmat( {sparse(nan(sz))}, size(S) ) );
else
Out = struct( 'model_data', repmat( {nan(sz)}, size(S) ) );
end
for jj = 1 : numel(S)
sz = size(S(jj).model_data);
Out(jj).model_data(1:sz(1),1:sz(2)) = S(jj).model_data;
end
end
8 comentarios
per isakson
el 10 de Nov. de 2019
Editada: per isakson
el 10 de Nov. de 2019
It's far from obvious to me what algorithm you try to implement and I cannot easily deduce it from the example.
Regarding your code I directly observe that
- all T_actual(6:7,:) and all T_actual(:,6:7) are equal to zero
- the maximum values of the counters, k, i, j, are 3
- the maximum value of (i+k)-1 and (j+k)-1, respectively is 5, which explains why all T_actual(6:7,:) and all T_actual(:,6:7) are equal to zero
- all T_actual(5,1:5)==T_expected(7,3:7)
Proposal: Post a new question in which you describe in some detail the algorithm you try to implement.
Más respuestas (0)
Ver también
Categorías
Más información sobre Structures en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!