Compare results of different step size using Euler's method
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Lucky
el 30 de Oct. de 2019
Comentada: Jan Smid
el 15 de Mzo. de 2021
x1=zeros(10000,1);
x2=zeros(10000,1);
x3=zeros(10000,1);
Time=zeros(10000,1);
for i=1:10001
t=(i-1)*0.0005;
Time(i)=t;
if t==0
x1(i)=0;
x2(i)=0;
x3(i)=2;
else
x1(i)=x1(i-1)+x2(i-1)*0.0005;
x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
x2(i)=x2(i-1)+x3(i-1)*0.0005;
end
Xa=x1*180/pi;
plot(Time,Xa,'red')
I can get the plot for one time interval but I want to get it for different time intervals such as at 0.001, 0.01,0.1 and also compare the results on the same plot. how do i do this? please help??
0 comentarios
Respuesta aceptada
ME
el 30 de Oct. de 2019
I have made a few tweaks to your code and it will now allow you to alter one parameter value (the time step size) and produce a new approximation that will be added to your previous plot.
clear all
h = 0.00001;
x1=zeros(round(5/h),1);
x2=zeros(round(5/h),1);
x3=zeros(round(5/h),1);
Time=zeros(round(5/h),1);
for i=1:(5/h)+1
t=(i-1)*h;
Time(i)=t;
if t==0
x1(i)=0;
x2(i)=0;
x3(i)=2;
else
x1(i)=x1(i-1)+x2(i-1)*h;
x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
x2(i)=x2(i-1)+x3(i-1)*h;
end
end
Xa=x1*180/pi;
hold on
plot(Time,Xa)
Here h is your time step and I have just modified everything else to produce the correct length arrays for storing the results. I also took out the 'red' from your plotting command so that each approximation will automatically plot in a different colour.
2 comentarios
ME
el 30 de Oct. de 2019
Editada: ME
el 30 de Oct. de 2019
I guess you'd have to adjust this to something like:
h = sort([0.00001 0.005 0.01],'descend');
for step = 1:numel(h)
x1=zeros(round(5/h(step)),1);
x2=zeros(round(5/h(step)),1);
x3=zeros(round(5/h(step)),1);
Time=zeros(round(5/h(step)),1);
for i=1:(5/h(step))+1
t=(i-1)*h(step);
Time(i)=t;
if t==0
x1(i)=0;
x2(i)=0;
x3(i)=2;
else
x1(i)=x1(i-1)+x2(i-1)*h(step);
x3(i-1)=2-9*sin(x1(i-1))-x2(i-1);
x2(i)=x2(i-1)+x3(i-1)*h(step);
end
end
Xa=x1*180/pi;
hold on
plot(Time,Xa)
end
Here the sort is to make sure that you start with the largest step size, otherwise you'll run into issues when you come to plotting.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!