The symbolic code is not running

1 visualización (últimos 30 días)
MINATI
MINATI el 4 de Nov. de 2019
Comentada: MINATI el 10 de Nov. de 2019
syms t x a p q r a1 a2 A pr
f(1)=x+p*x^2/2;g(1)=a*x+q*x^2/2;h(1)=1+r*x;
for i=1:5 %(Can I take i=0:5)
fa(i) = subs(f(i),x,t);ga(i) = subs(g(i),x,t);ha(i) = subs(h(i),x,t);
f(i+1) =f(i)+a1*int(int(int((diff(fa(i),t,3)+(fa(i)+ga(i))*diff(fa(i),t,2)+ a1*diff(fa(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
g(i+1) =g(i)+a1*int(int(int((diff(ga(i),t,3)+(fa(i)+ga(i))*diff(ga(i),t,2)+ a1*diff(ga(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
h(i+1) =h(i)+pr*a2*int(int((diff(ha(i),t,2)+(fa(i)+ga(i))*diff(ha(i),t,1)+ A*ha(i)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x));
end
f=f(1)+f(2)+f(3)+f(4)+f(5);
disp(f(i+1))
figure(1)
fplot(x,f) %% (for FIG. a1=1;a2=2;A=1;pr=1;)
  10 comentarios
Walter Roberson
Walter Roberson el 10 de Nov. de 2019
You have triple nested integrals, but you only have bounds for one of the levels, which leads you open to issues about ending up with whatever constant of integration that the routines decide to throw in. Wouldn't it be better to use definite integrals for all of the calculations? At the very least you should be indicating the variable of integration.
MINATI
MINATI el 10 de Nov. de 2019
ok
Thanks Walter
for your interest and time

Iniciar sesión para comentar.

Respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by