The symbolic code is not running
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
syms t x a p q r a1 a2 A pr
f(1)=x+p*x^2/2;g(1)=a*x+q*x^2/2;h(1)=1+r*x;
for i=1:5 %(Can I take i=0:5)
fa(i) = subs(f(i),x,t);ga(i) = subs(g(i),x,t);ha(i) = subs(h(i),x,t);
f(i+1) =f(i)+a1*int(int(int((diff(fa(i),t,3)+(fa(i)+ga(i))*diff(fa(i),t,2)+ a1*diff(fa(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
g(i+1) =g(i)+a1*int(int(int((diff(ga(i),t,3)+(fa(i)+ga(i))*diff(ga(i),t,2)+ a1*diff(ga(i),t,1)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x)));
h(i+1) =h(i)+pr*a2*int(int((diff(ha(i),t,2)+(fa(i)+ga(i))*diff(ha(i),t,1)+ A*ha(i)*(diff(fa(i),t,1)+diff(ga(i),t,1))),t,0,x));
end
f=f(1)+f(2)+f(3)+f(4)+f(5);
disp(f(i+1))
figure(1)
fplot(x,f) %% (for FIG. a1=1;a2=2;A=1;pr=1;)
10 comentarios
Walter Roberson
el 10 de Nov. de 2019
You have triple nested integrals, but you only have bounds for one of the levels, which leads you open to issues about ending up with whatever constant of integration that the routines decide to throw in. Wouldn't it be better to use definite integrals for all of the calculations? At the very least you should be indicating the variable of integration.
Respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!