How can i obtain the frequency response for Savitzky-Golay filtering?
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
mayur khedekar
el 27 de Nov. de 2019
Comentada: Star Strider
el 8 de Jul. de 2021
I want to prove that this filter is a low pass filter by passing it from a heaviside and then i need the define the transfer function to get the bode plots.
How should i get the transfer function for heavyside.
0 comentarios
Respuesta aceptada
Star Strider
el 27 de Nov. de 2019
Try this instead:
t = linspace(0, 10);
y = sin(2*pi*t/5) + randn(size(t))/10;
sgf = sgolayfilt(y, 3, 11);
figure
plot(t, y)
hold on
plot(t, sgf, '-r')
hold off
grid
L = numel(t);
Ts = mean(diff(t));
Fs = 1/Ts;
Fn = Fs/2;
FTy = fft(y)/L;
FTsgf = fft(sgf)/L;
Fv = linspace(0, 1, fix(L/2)+1)*Fn;
Iv = 1:numel(Fv);
figure
subplot(3,1,1)
plot(Fv, abs(FTy(Iv))*2)
grid
title('Fourier Transform: y')
subplot(3,1,2)
plot(Fv, abs(FTsgf(Iv))*2)
grid
title('Fourier Transform: Savitzky-Golay Filter of y')
subplot(3,1,3)
plot(Fv, abs(FTsgf(Iv)./FTy(Iv))*2)
grid
title('Savitzky-Golay Transfer Function')
This nicely demonstratres the lowpass filter characteristic.
Experiment with other signals to get different (but likely similar) resultls.
6 comentarios
Varun Gupta
el 8 de Jul. de 2021
I ran the signalVisualizer tool ---> (views) Spectrum, and feel much closer to what I wanted to see,
Its a graph against Power Spectrum (dB) and normalized frequency, I see that the graph is quite similar to how the frequency response of the SG filter should look like.
Are they idicating the same thing?
Thank you so much for the help.
Más respuestas (0)
Ver también
Categorías
Más información sobre Digital Filter Analysis en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!