How can calcuate the lines of code efficiently?

1 visualización (últimos 30 días)
Amir Torabi
Amir Torabi el 4 de Dic. de 2019
Comentada: Ahmad Nadeem el 14 de Jul. de 2021
Hello. This code calculates the Laplacian. I am looking for reducing the time running of it. My main aim is improving the performance of loop running time.
Thanks
%%%code
nx=512;
ny=nx;
dx=1;
dy=dx;
format long;
nxny=nx*ny;
r=zeros(1,nx);
r(1:2)=[2,-1];
T=toeplitz(r);
E=speye(nx);
grad=-(kron(T,E)+kron(E,T));%Tensor
%-- for periodic boundaries
for i=1:nx
ii=(i-1)*nx+1;
jj=ii+nx-1;
grad(ii,jj)=1.0;
grad(jj,ii)=1.0;
kk=nxny-nx+i;
grad(i,kk)=1.0;
grad(kk,i)=1.0;
end%for
grad = grad /(dx*dy);
  1 comentario
Ahmad Nadeem
Ahmad Nadeem el 14 de Jul. de 2021
hello brother!
I want to contact you. Can you please share your email or any other ID?
Thank You
Best Regards
Ahmad Nadeem
Hongik University, Seoul, South Korea

Iniciar sesión para comentar.

Respuesta aceptada

Stephan
Stephan el 4 de Dic. de 2019
Yes, you can if you avoid using a loop and vectorize your code - see here:
tic
%%%code
nx=512;
ny=nx;
dx=1;
dy=dx;
format long;
nxny=nx*ny;
r=zeros(1,nx);
r(1:2)=[2,-1];
T=toeplitz(r);
E=speye(nx);
grad=-(kron(T,E)+kron(E,T));%Tensor
%-- for periodic boundaries
ii=(0:nx-1).*nx+1;
jj = ii+nx-1;
grad(ii,jj)=1.0;
grad(jj,ii)=1.0;
kk=(nxny-nx+1):nxny;
grad(1:nx,kk)=1.0;
grad(kk,1:nx)=1.0;
grad = grad /(dx*dy);
toc
Elapsed time is 0.145899 seconds.
Your code:
tic
%%%code
nx=512;
ny=nx;
dx=1;
dy=dx;
format long;
nxny=nx*ny;
r=zeros(1,nx);
r(1:2)=[2,-1];
T=toeplitz(r);
E=speye(nx);
grad=-(kron(T,E)+kron(E,T));%Tensor
%-- for periodic boundaries
for i=1:nx
ii=(0:nx-1).*nx+1;
jj=ii+nx-1;
grad(ii,jj)=1.0;
grad(jj,ii)=1.0;
kk=nxny-nx+i;
grad(i,kk)=1.0;
grad(kk,i)=1.0;
end
toc
Elapsed time is 11.333450 seconds.
Are the results correct? - to check this we call one of the results grad1 and subtract grad1 from grad:
nx=512;
ny=nx;
dx=1;
dy=dx;
format long;
nxny=nx*ny;
r=zeros(1,nx);
r(1:2)=[2,-1];
T=toeplitz(r);
E=speye(nx);
grad=-(kron(T,E)+kron(E,T));%Tensor
%-- for periodic boundaries
for i=1:nx
ii=(0:nx-1).*nx+1;
jj=ii+nx-1;
grad(ii,jj)=1.0;
grad(jj,ii)=1.0;
kk=nxny-nx+i;
grad(i,kk)=1.0;
grad(kk,i)=1.0;
end
ii=(0:nx-1).*nx+1;
jj = ii+nx-1;
grad(ii,jj)=1.0;
grad(jj,ii)=1.0;
kk=(nxny-nx+1):nxny;
grad(1:nx,kk)=1.0;
grad(kk,1:nx)=1.0;
grad1 = grad /(dx*dy);
expect_all_zeros = grad1-grad
expect_all_zeros =
All zero sparse: 262144×262144
Appears to work fine...
  4 comentarios
Amir Torabi
Amir Torabi el 5 de Dic. de 2019
i checked it again. yes your answer is correct. Thanks.
Ahmad Nadeem
Ahmad Nadeem el 14 de Jul. de 2021
I didnt understand this code can you please help me to understand this code?

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Matrix Indexing en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by