
トレーニングシーケンスの特徴次元について
12 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
misato abe
el 12 de Dic. de 2019
Comentada: misato abe
el 13 de Dic. de 2019
LSTMネットワークを用いた予測について質問があります。
現在、商品出荷台数や人口などを含めた4つのデータから、将来の商品出荷台数を予測できないか考えております。
を参考にしました。
以下のコードを実行したところ
「トレーニング シーケンスの特徴次元は 1 ですが、入力層には特徴次元 4のシーケンスが必要です。」
と警告を受けました。
「%予測子と応答」の部分が悪いのでしょうか。
ご回答よろしくお願いします。
%データの読み取り
opts = detectImportOptions('mlaysia.xlsx','DataRange','B3');
T1=readtable('mlaysia.xlsx',opts,'ReadVariableNames',false);
T1_data = T1.Variables;
%1行N列の配列へ
for i=1:4
T1_array{i}=T1_data(1:end,i)';
end
%転置
T1_a=(T1_array)';
%シーケンスの最初の90%で学習を行い残りの10%でテストする
numTimeStepsTrain = floor(0.9*numel(T1_a));
T1Train = T1_a(1:numTimeStepsTrain+1);
T1Test = T1_a(numTimeStepsTrain+1:end);
%予測子と応答の準備
XT1Train = T1Train(1:end-1);
YT1Train = T1Train(2:end);
%lstmアーキテクチャ 定義
numFeatures=2;
numResponse=1;
numHiddenUnits=200;
%lstm層
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponse)
regressionLayer];
%トレーニングオプション
options = trainingOptions('adam', ...
'MaxEpochs',200, ...
'GradientThreshold',1, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',125, ...
'LearnRateDropFactor',0.2, ...
'Verbose',0, ...
'Plots','training-progress');
net = trainNetwork(XT1Train,YT1Train,layers,options);
取り込んだExcelファイルの一部は以下の通りです。

0 comentarios
Respuesta aceptada
Hiro Yoshino
el 12 de Dic. de 2019
データの作り方が多分おかしいのだと思われます。

こんな風にして、一つのベクトルを一つのcellに入れます。
つまり、データセット数 (ここは自分で決める) x 4 のセルを作って、そのセルの一つ一つには
上のようなベクトルが入っているようにします。
Más respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!