Regarding GAN and its loss objective

1 visualización (últimos 30 días)
Deepak Sivadas
Deepak Sivadas el 13 de Dic. de 2019
Respondida: Sourav Bairagya el 16 de Dic. de 2019
How to use 'mse' as loss function?
In the example provided, sigmoid is used. How to modify the function to make the loss objective as minimum mse.

Respuesta aceptada

Sourav Bairagya
Sourav Bairagya el 16 de Dic. de 2019
You can use 'mse' function from Deep Learning Toolbox which calculates half mean sqaured error between given two inputs.
dlY = mse(dlX,targets);
Format for 'dlX' or 'targets' will be as follows: [height, width, no of channels, no of observations].
'dlX' and 'targets' can be of datatype dlarray or numeric array.
If you want to use whole mse loss, then multiply the output with 2, i.e.
dlY = 2*mse(dlX,targets);
For more information you can leverage this link:

Más respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by