How to predict future data after training svm ?

1 visualización (últimos 30 días)
Ali Yar Khan
Ali Yar Khan el 2 de Feb. de 2020
Comentada: Ali Yar Khan el 5 de Feb. de 2020
I have trained and exported a svm model using the classification learner app. But when i try to predict label on new data i am failing. My code for training is as below :
function obj = trainClassifier(obj,datasetFolder)
training = fullfile(datasetFolder,'train.mat');
meta = fullfile(datasetFolder , 'meta.mat');
save('meta.mat','meta');
dataset = load(training);
table = array2table(dataset.data);
variableNames = table.Properties.VariableNames;
table.class = dataset.labels;
predictorNames = {'data1', 'data2', 'data3', 'data4', 'data5', 'data6', 'data7', 'data8', 'data9', 'data10', 'data11', 'data12', 'data13', 'data14', 'data15', 'data16', 'data17', 'data18', 'data19', 'data20', 'data21', 'data22', 'data23', 'data24', 'data25', 'data26', 'data27', 'data28', 'data29', 'data30', 'data31', 'data32', 'data33', 'data34', 'data35', 'data36', 'data37', 'data38', 'data39', 'data40', 'data41', 'data42', 'data43', 'data44', 'data45', 'data46', 'data47', 'data48', 'data49', 'data50', 'data51', 'data52', 'data53', 'data54', 'data55', 'data56', 'data57', 'data58', 'data59', 'data60', 'data61', 'data62', 'data63', 'data64', 'data65', 'data66', 'data67', 'data68', 'data69', 'data70', 'data71', 'data72', 'data73', 'data74', 'data75', 'data76', 'data77', 'data78', 'data79', 'data80', 'data81', 'data82', 'data83', 'data84', 'data85', 'data86', 'data87', 'data88', 'data89', 'data90', 'data91', 'data92', 'data93', 'data94', 'data95', 'data96', 'data97', 'data98', 'data99', 'data100', 'data101', 'data102', 'data103', 'data104', 'data105', 'data106', 'data107', 'data108', 'data109', 'data110', 'data111', 'data112', 'data113', 'data114', 'data115', 'data116', 'data117', 'data118', 'data119', 'data120', 'data121', 'data122', 'data123', 'data124', 'data125', 'data126', 'data127', 'data128', 'data129', 'data130', 'data131', 'data132', 'data133', 'data134', 'data135', 'data136', 'data137', 'data138', 'data139', 'data140', 'data141', 'data142', 'data143', 'data144'};
predictors = table(:, variableNames);
response = table.class;
isCategoricalPredictor = [false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false, false];
% Train a classifier
% This code specifies all the classifier options and trains the classifier.
template = templateSVM(...
'KernelFunction', 'polynomial', ...
'PolynomialOrder', 2, ...
'KernelScale', 'auto', ...
'BoxConstraint', 1, ...
'Standardize', true);
options = statset('UseParallel',true);
classificationSVM = fitcecoc(...
predictors, ...
response, ...
'Learners', template, ...
'Coding', 'onevsone', ...
'Options', options , ...
'ClassNames', [1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36; 37] , ...
'Verbose',2);
% Create the result struct with predict function
predictorExtractionFcn = @(t) t(:, predictorNames);
svmPredictFcn = @(x) predict(classificationSVM, x);
obj.network.predictFcn = @(x) svmPredictFcn(predictorExtractionFcn(x));
% Add additional fields to the result struct
obj.network.RequiredVariables = {'data1', 'data2', 'data3', 'data4', 'data5', 'data6', 'data7', 'data8', 'data9', 'data10', 'data11', 'data12', 'data13', 'data14', 'data15', 'data16', 'data17', 'data18', 'data19', 'data20', 'data21', 'data22', 'data23', 'data24', 'data25', 'data26', 'data27', 'data28', 'data29', 'data30', 'data31', 'data32', 'data33', 'data34', 'data35', 'data36', 'data37', 'data38', 'data39', 'data40', 'data41', 'data42', 'data43', 'data44', 'data45', 'data46', 'data47', 'data48', 'data49', 'data50', 'data51', 'data52', 'data53', 'data54', 'data55', 'data56', 'data57', 'data58', 'data59', 'data60', 'data61', 'data62', 'data63', 'data64', 'data65', 'data66', 'data67', 'data68', 'data69', 'data70', 'data71', 'data72', 'data73', 'data74', 'data75', 'data76', 'data77', 'data78', 'data79', 'data80', 'data81', 'data82', 'data83', 'data84', 'data85', 'data86', 'data87', 'data88', 'data89', 'data90', 'data91', 'data92', 'data93', 'data94', 'data95', 'data96', 'data97', 'data98', 'data99', 'data100', 'data101', 'data102', 'data103', 'data104', 'data105', 'data106', 'data107', 'data108', 'data109', 'data110', 'data111', 'data112', 'data113', 'data114', 'data115', 'data116', 'data117', 'data118', 'data119', 'data120', 'data121', 'data122', 'data123', 'data124', 'data125', 'data126', 'data127', 'data128', 'data129', 'data130', 'data131', 'data132', 'data133', 'data134', 'data135', 'data136', 'data137', 'data138', 'data139', 'data140', 'data141', 'data142', 'data143', 'data144'};
obj.network.ClassificationSVM = classificationSVM;
obj.network.About = 'This struct is a trained model exported from Classification Learner R2018a.';
obj.network.HowToPredict = sprintf('To make predictions on a new table, T, use: \n yfit = c.predictFcn(T) \nreplacing ''c'' with the name of the variable that is this struct, e.g. ''trainedModel''. \n \nThe table, T, must contain the variables returned by: \n c.RequiredVariables \nVariable formats (e.g. matrix/vector, datatype) must match the original training data. \nAdditional variables are ignored. \n \nFor more information, see <a href="matlab:helpview(fullfile(docroot, ''stats'', ''stats.map''), ''appclassification_exportmodeltoworkspace'')">How to predict using an exported model</a>.');
% Perform cross-validation
partitionedModel = crossval(obj.network.ClassificationSVM, 'KFold', 10, 'Options',options);
% Compute validation predictions
[validationPredictions, validationScores] = kfoldPredict(partitionedModel,'Options',options);
% Compute validation accuracy
validationAccuracy = 1 - kfoldLoss(partitionedModel, 'LossFun', 'ClassifError');
waitbar(0.75,f,'Name','Training',sprintf('Classifier has validation accuracy of %2.2f.',validationAccuracy));
pause(0.5)
%set network to use accross tha gui app
setappdata(f,'modal',obj.network);
% to save the modal in current directory for later use
obj.saveModal('modal',obj.network);
delete(f);
end
and to predict new data i am doing this :
function annotations = annotate(obj,featuresArray)
f = figure;
annotations = [];
tf = isappdata(f,'modal');
if tf == 0
obj.network = load('modal.mat');
else
obj.network = getappdata(f,'modal');
end
delete(f);
table = array2table(featuresArray);
variableNames = table.Properties.VariableNames;
f = waitbar(0,'1','Name','Annotating Frames',...
'CreateCancelBtn','setappdata(gcbf,''canceling'',1)');
s = size(featuresArray);
for i=1:s
flag_cancel = getappdata(f, 'canceling');
if flag_cancel
waitbar(1,f,'Canceled');
F = findall(0,'type','figure','tag','TMWWaitbar');
delete(F);
return
end
annotations = [annotations ; obj.network.classifier.predictFcn(table(i,variableNames))];
value = i/s;
waitbar(value,f, sprintf('%3.1f percent completed ',value*100));
end
delete(f);
end
Kindly please help me !
UPDATE
I solved the previous problem. One more question after
partitionedModel = crossval(obj.network.ClassificationSVM, 'KFold', 10 , 'Options',options);
statement should i save the partitioned model for further use or the "obj.network.ClassificationSVM" object in my code ? please clarify it

Respuesta aceptada

Muhammad Usama Sharaf SAAFI
Muhammad Usama Sharaf SAAFI el 5 de Feb. de 2020
[imagepred, probabilities] = predict(trainedModel.ClassificationSVM,imagefeatures3);
use this command for prediction.
  1 comentario
Ali Yar Khan
Ali Yar Khan el 5 de Feb. de 2020
thanks for this . I have an update about the question kindly check it again short note is written at bottom. also i want to get total average no of suggestions for each fold , misclassified , correct classified and sample error on each fold ?

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Productos


Versión

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by