Reconstructing a Random Step Sequence using FFT
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
Dear All,
It may seem like a trivial question, but can't seem to figure it out.
I am using fft to reconstruct a randomly generated step sequence (0's and 1's) through Fourier series coefficients. All else is fine except my reconstructed signal is off by one sample, meaning it is shifted back by 1 sample. Can you please tell me what could I be doing wrong here?
Thank you for your time and help.
Regards, Adeel
P.S. you can skip to part 2 in the code where I am calculating the Fourier series coefficients.
%%Part 1
%%To obtain fourier series coefficients of a peroidic signal using fft
clear all; close all; clc;
dur = 0.5; % Signal duration (sec)
step = 1e-3; % step size
f = 50; % frequency of the signal (Hz)
t = 0:step:dur-step;
M = length(t);
y1 = zeros(1,M);
p = 1;
%%This for loop generates a random step sequence with different
% duty cycle each time it runs. It emulates the behavior of
% sinusoidal PWM for use in DC to AC converters.
for i = 1:M
n = randi([0,1],1); % generate a random 0 or 1
k = randi([10,50],1); % generate a random integer between 10 & 50
if n == 0; % if n is 0, then the k entries of y1 will be 0
for j = 1:k
y1(p) = 1;
p = p+1; % increment index of y1 vector
end
else % if n is 1, then the k entries of y1 will be 1
for j = 1:k
y1(p) = 0;
p = p+1; % increment index of y1
end
end
if p >=M
y1 = y1(1:M);
break;
end
end
figure(1)
plot(t,y1,'LineWidth',2)
axis([0 dur -0.1 1.1])
%%----------------------------------------------
%%Part 2
%%Calculate the Fourier series coefficients of y1
N = length(y1); % window length/data length
Y1 = fft(y1)/N; % take fft
N1 = ceil(N/2);
x = 1:1:N;
k = 0:N-1;
omega = k*2*pi*f; % fundamental frequencies and its harmonics
an = 2*real(Y1);
an(1) = an(1)/2;
bn = -2*imag(Y1);
fapp = an(1)*ones(size(y1));
L = N1;
for k = 1:L
fapp = fapp + an(k+1)*cos(2*pi*x*k/N) + bn(k+1)*sin(2*pi*x*k/N);
end
plot(t,y1,'-.b'); hold on
plot(t,fapp,'-r')
0 comentarios
Respuesta aceptada
Más respuestas (0)
Ver también
Categorías
Más información sobre Fourier Analysis and Filtering en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!