algorithm for computing ? is due to Archimedes: how steps can be repeated
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
The following algorithm for computing ? is due to Archimedes:
1. Start with ? = 1 and ? = 6.
2. Replace ? by 2?.
3. Replace ? by sqrt(2 − sqrt(4 − ?))
4. Let ? = ??/2.
5. Let ? = na/2
6. Let ? = (? + ?)/2 (estimate of ?)
7. Let ? = (? − ?)/2 (estimate of error)
8. Repeat steps 2 – 7 until ? becomes smaller than a given tolerance ???.
9. Output ? and ?
Write a function that implements this algorithm. Use your function to determine ? and ? for ??? = 10^(=k)
, ? = 2, 3, … , 10.
I have written a code but i do not know how to write it so that if the value of e is larger than tol then steps 2-7 repeated. I have written this :
```
function [p,e] = algorithmPi(tol)
a = 1;
n = 6;
e = inf;
n = 2*n;
a = sqrt(2-sqrt(4-(a^2)));
l = (n*a)/2;
u = l/(sqrt((1-(a)^2)/2));
p = (u+l)/2; % estimate of pi
e = (u-l)/2; % estimate of error
if e < tol
done = true;
disp('Complete: Error below tolerance')
end
end
9 comentarios
Rik
el 23 de Feb. de 2020
What code do you want to repeat? Make sure that is inside the while loop.
I would strongly urge you to read the documentation for the functions you're using if you don't understand what they do.
Respuestas (1)
Pravin Jagtap
el 25 de Feb. de 2020
Hello Anastasia,
As mentioned in the above comments, I would recommend you to follow the documentation for understanding the loops. Refer to the following template which will help you to implement the algorithm:
function [p,e] = algorithmPi(tol)
% step 1 - Initialize a, n and e(to inf)
% step 2 - Iterative process from 2 -7
while (e > tol)
% step 3 - Replace n and a
% step 4 - Compute l, u, p and e
end
end
0 comentarios
Ver también
Categorías
Más información sobre Matrix Indexing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!