Help regarding the transposed convolution layer

1 visualización (últimos 30 días)
Radians
Radians el 6 de Mzo. de 2020
Respondida: Srivardhan Gadila el 17 de Mzo. de 2020
Hi,
Please provide help regarding how the transposedConv2dLayer works.
I am struggling to understand the following helper function
function out = createUpsampleTransponseConvLayer(factor,numFilters)
filterSize = 2*factor - mod(factor,2);
cropping = (factor-mod(factor,2))/2;
numChannels = 1;
out = transposedConv2dLayer(filterSize,numFilters, ...
'NumChannels',numChannels,'Stride',factor,'Cropping',cropping);
end
How does the filtersize and stride affect the output of this layer?
What's the difference between this layer and a simple upsampling layer?
whether the weights are somehow transposed or learned from scratch?

Respuesta aceptada

Srivardhan Gadila
Srivardhan Gadila el 17 de Mzo. de 2020
An upsampling layer uses a defined/pre-defined interpolation method to upsample the input but a transposed convolution layer learns weights from the scratch. Starting in R2019a, the software, by default, initializes the layer weights of this layer using the Glorot initializer. This behavior helps stabilize training and usually reduces the training time of deep networks.
Check for the references of the transposedConv2dLayer for more information.
Refer to Input Arguments section of transposedConv2dLayer for explanation of each input parameter.

Más respuestas (0)

Categorías

Más información sobre Image Data Workflows en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by