How to Perform Gradient Descent for DQN Loss Function
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I'm writing the DQN from scratch, and I'm confused of the procedure of updating the evaluateNet from the gradient descent.
The standard DQN algorithm is to define two networks:
. Train
with minibatch, and update the
with gradient descent step on 
I define
. When update the
, I first make the
, and then only update
, which guarantee the
. Then I update the
. If I choose the feedforward train method as '
', does [1] update the evalNet correctly via gradient descent?
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!