How to Perform Gradient Descent for DQN Loss Function

2 visualizaciones (últimos 30 días)
Sherry X
Sherry X el 10 de Mzo. de 2020
Editada: Sherry X el 10 de Mzo. de 2020
I'm writing the DQN from scratch, and I'm confused of the procedure of updating the evaluateNet from the gradient descent.
The standard DQN algorithm is to define two networks: . Train with minibatch, and update the with gradient descent step on
I define . When update the , I first make the , and then only update , which guarantee the . Then I update the . If I choose the feedforward train method as '', does [1] update the evalNet correctly via gradient descent?

Respuestas (0)

Categorías

Más información sobre Deep Learning Toolbox en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by