how to get good accuracy in mlp & k-fold crossvalidation code

3 visualizaciones (últimos 30 días)
hello, can anyone help me...
I found a problem in k fold cross validation, my research uses 4 classes of right hand, left hand and right, left foot movements.
I need the mlp & k fold cross validation code with good accuracy
please help me, email: 16101109@ittelkom-pwt.ac.id
for df = 1:10
n = 1;
for c = 1:6520
if indices (1,c) == df
K_fold_test(n) = c;
n = n +1;
end
end
n = 1;
for c = 1:6520
if indices (1,c) ~= df
K_fold_train(n) = c;
n = n +1;
end
end
%test = (indices == df);
%train = ~test;
%train = train.';
U_testing = T_data_time(1:19,K_fold_test); %data testing MLP K_fold
%test = test.';
U_training = T_data_time(1:19,K_fold_train); % data training MLP K_fold
Target_test_MLP = Target_new(1:4,K_fold_test);
Target_train_MLP = Target_new(1:4,K_fold_train);
% h =[16];
h = [8 2]; %Jumlah node pada hidden layer
% h = [16 2];
%X = (T_var_time_nn_stdz).'; %pilih salah satu feature
% Data_train_MLP = (U).';
% Data_test_MLP = (UT).';
% Data_target_test = (Target_test_MLP).';
% Data_target_train = (Target_train_MLP).';
lambda = 1e-2;
[model, mse] = mlp(U_training, Target_train_MLP, h, lambda);
% plot(mse);
% disp(['T = [' num2str(Data_target_test) ']']);
Y_norm = mlpPred(model, U_testing);
% disp(['Y = [' num2str(Y) ']']);
Y_Max = max(Y_norm);
Y_output = zeros(size(Y_norm));
match = (Y_norm == Y_Max );
Y_output(match) = 1;
Y_output(~match)= 0;
Y_Round = round(Y_norm);
Y_R_all = [ Y_R_all Y_Round ] ;
plotconfusion(Target_test_MLP, Y_output)
figure
%Y_Round = round(Y);
%Y_R_all = [ Y_R_all Y_Round ] ;
end

Respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by