How to make code to split, compute mean, apply Softmax

2 visualizaciones (últimos 30 días)
Kong
Kong el 16 de Mzo. de 2020
Comentada: Gaurav Garg el 23 de Mzo. de 2020
I have 90 datasets (9 data x 10 labels)
1. split the dataset into support(80dataset) and query(10dataset)
2. Compute each mean of examples(9 means)
3. Compute the Euclidean distance between each mean and query(10dataset)
4. apply Softmax and calculate probabilities
5. compute accuracy

Respuesta aceptada

Gaurav Garg
Gaurav Garg el 20 de Mzo. de 2020
Editada: Gaurav Garg el 20 de Mzo. de 2020
Hi,
You can use splitapply function to split your whole data into 9 groups and apply the mean function to each group. It would return you an array of 9 elements, where each element is a mean to one group. You can now, carry on with the third step to compute the Euclidean distance between each mean and the query set, and proceed with steps 4 and 5.
Algo:
Y=splitapply (mean, X, G); % G is a vector of group numbers, X is the whole data
for i=1:8
% compute Euclidean distance between Y[i] and query dataset
end
% Steps 4 and 5
  3 comentarios
Sindar
Sindar el 23 de Mzo. de 2020
If your dataset is X and the last column is not part of the data:
G = findgroups(X(:,end));
Y = splitapply(mean, X(:,1:end-1), G);
Gaurav Garg
Gaurav Garg el 23 de Mzo. de 2020
Hi Kong,
Kindly go through the link here.

Iniciar sesión para comentar.

Más respuestas (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by