Info

La pregunta está cerrada. Vuélvala a abrir para editarla o responderla.

* Edit post * Report this post * Reply with quote Numerical result of the solve function

1 visualización (últimos 30 días)
I'm Seeking the common points to the parabola and the circle centered in the point A(Xa,Za)with AB radius.
Why not assume the function 'solve' the values of Xa, Za and AB in the equation and thus obtain a numerical result rather than analytical in the first call?
Xa=.5 Za=1 AB=1
%----------------------CÁLCULOS---------------------------------------------- % Za=1/(4*F)*Xa^2 - equation of the parabola that passes the point A(Xa,Za) % Zb=1/(4*F)*Xb^2; - equation of the parabola that passes the point B(Xb,Zb) % (Xb-Xa)^2+(Zb-Za)^2=AB^2 -equation of the circle of radius AB centered at the point A(Xa,Za) %............................................................................
% first call SOLVE [F,Xb,Zb]=solve('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb','(Xb-Xa)^2+(Zb-Za)^2-AB^2');
% call SOLVE with the values of Xa,Za,AB the result are numeric %--------------------------------------------------------------- [F,Xb,Zb]=solve('1/(4*F)*.5^2-1','1/(4*F)*Xb^2-Zb','(Xb-.5)^2+(Zb-.5)^2-1^2');
appreciate any help

Respuestas (1)

Walter Roberson
Walter Roberson el 27 de En. de 2011
[F,Xb,Zb]=solve(subs('1/(4*F)*Xa^2-Za','1/(4*F)*Xb^2-Zb'),subs('(Xb-Xa)^2+(Zb-Za)^2-AB^2'));

La pregunta está cerrada.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by