Numerical Analysis - 2nd Order Taylor Method to Solve IVP Problem With Code

23 visualizaciones (últimos 30 días)
function [y1] = TaylorMethod(f,inter,y0,k)
t(1) = inter(1); %initial time
y1(1) = y0; y2(1) = 0; %setting the initial condition
h = 0.1*(2.^-k); % setting the step size
n = 1/h; % number of steps in terms of the step size.
Ft = @(t,y) diff(f,t);
Fy = @(t,y) diff(f,y);
for i = 1:n
t(i+1) = t(i) + h;
euler_y(i+1) = y(i) + h*f(t(i),y(i));
y1(i+1) = euler_y(i+1) + ((h^2)/2)*(Ft(t(i),y1(i)) + Fy(t(i),y1(i))*f(t(i),y1(i)));
end
Hello,
I am just playing around with some numerical methods and I seem to be having some issues with my code; I want my code to be as robust as possible, so I allocated the variables Fy and Ft to be the partial derivatives of a function 'f' inputed in the function TaylorMethod. However, I get an erro trying to do this.
The IVP I am trying to solve with my function is
y' = 5*(t^4)*y --> this is function 'f'
inter = [0 1]
y(0) = 1
Thank you in advance
  4 comentarios
Maria Raheb
Maria Raheb el 10 de Abr. de 2020
f = @(t,y) 5*(t.^4).*y
As an example,
[y1] = TaylorMethod(f,[0 1],1,1)
Maria Raheb
Maria Raheb el 10 de Abr. de 2020
@darova
Thank you for the correction, but the problem is arising in my use of function handles for the partial derivatives of my function f.

Iniciar sesión para comentar.

Respuestas (1)

Guru Mohanty
Guru Mohanty el 14 de Abr. de 2020
I understand, you want to solve the IVP with 2ndorder Tayler Method. In your code the error occurs during computation of partial differentiation. You can also do the Partial differentiation using Symbolic toolbox and evaluate its value using subs function. Here is a sample code for it.
clc; clear all;
f =@(t,y)(5*(t^4)*y);% --> this is function 'f'
inter = [0 1];
y0 = 1;
k=1;
Out = TaylorMethod(f,inter,y0,k);
plot(Out);
function [y1] = TaylorMethod(f,inter,y0,k)
syms t y tp yp
Ft1=subs(diff(f,t),{t,y},{tp,yp});
Fy1=subs(diff(f,y),{t,y},{tp,yp});
clear t y;
t(1) = inter(1); %initial time
y1(1) = y0;
y2(1) = 0; %setting the initial condition
h = 0.1*(2.^-k); % setting the step size
n = 1/h; % number of steps in terms of the step size.
for i = 1:n-1
t(i+1) = t(i) + h;
euler_y(i+1) = y1(i) + h*f(t(i),y1(i));
y1(i+1) = euler_y(i+1) + ((h^2)/2)*(subs(Ft1,{tp,yp}, {t(i),y1(i)}) + subs(Fy1,{tp,yp},{t(i),y1(i)})*f(t(i),y1(i)));
end
end
  2 comentarios
Guru Mohanty
Guru Mohanty el 15 de Abr. de 2020
Declare All the inputs e.g f, inter, y0 ...
And call the function
TaylorMethod(f,inter,y0,k);
Refer first 6 Lines.

Iniciar sesión para comentar.

Categorías

Más información sobre Symbolic Math Toolbox en Help Center y File Exchange.

Productos


Versión

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by