double integration of parametric function
7 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Danny Van Elsen
el 10 de Abr. de 2020
Comentada: David Goodmanson
el 17 de Abr. de 2020
hello all,
I know how to plot a parametric surface, for example as in
syms u v
x = u * cos(v);
y = u * sin(v);
z = v;
fsurf(x, y, z, [0 5 0 4*pi])
but can someone point me to the appropriate function for the double integration that calculates the surface area, for example over the interval
0 <= u <= 5
0 <= v <= 4*pi
of the example above?
regards, Danny.
0 comentarios
Respuesta aceptada
David Goodmanson
el 15 de Abr. de 2020
Hi Danny,
You can find the surface area by finding the vectors Du and Dv that are parallel to the surface when you vary u and v respectively. Taking their cross product gives the the normal unit vector n, times the area element dS of a parallelogram whose area is proportional to dudv. Integrating the area elements give the total area. Since the area element does not depend on v, you can multiply by 4*pi and just do the u integral.
This procedure is analogous to finding the Jacobian. It's almost easier to do this by hand than to use syms, but
syms u v a real
x = u * cos(v);
y = u * sin(v);
z = a*v; % in case you want to vary the pitch
zplot = v;
fsurf(x, y, zplot, [0 5 0 4*pi])
Du = diff([x,y,z],u) % Du is diff() times du
Dv = diff([x,y,z],v) % Dv is diff() times dv
dS = simplify(norm(cross(Du,Dv)))
Area = 4*pi*int(dS,0,5)
double(subs(Area,a,1))
% results
Du = [ cos(v), sin(v), 0]
Dv = [ -u*sin(v), u*cos(v), a]
dS = (a^2 + u^2)^(1/2)
Area = 4*pi*((a^2*log((a^2 + 25)^(1/2) + 5))/2 - (a^2*log(a^2))/4 + (5*(a^2 + 25)^(1/2))/2)
ans = 174.7199
2 comentarios
Danny Van Elsen
el 16 de Abr. de 2020
Editada: Danny Van Elsen
el 16 de Abr. de 2020
David Goodmanson
el 17 de Abr. de 2020
Hi Danny, I don't think so, although I would be happy to be proved wrong. For a volume integral you can at least get the Jacobian basically in one line with symbolic variables.
Más respuestas (1)
Ver también
Categorías
Más información sobre Calculus en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!