Removing drift from noisy accelerometer data
99 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi all,
I am using the sensors within my phone to generate a CSV file of accelerations in 3-axis (x,y,z). I have now imported the data to matlab using the CSVread funtion and have began processing the data.
I have applied a filter to reduce some of the noise from the signal however upon integration the signal still drifts. The code I am using is shown below, for simplicitys sake I am only showing data from one axis. Any help is appreciated
clear; close; clc;
D=csvread('test20m3.csv');
t=D(:,1); %Define time
XAccRaw=D(:,5); %Define X acceleration
XAcc=XAccRaw*9.81; %Convert to m/s^2
d=designfilt('lowpassfir','filterorder',10,'CutOffFrequency',10,'SampleRate',100); %Lowpass FIR filter
AX=filtfilt(d,XAcc); %Apply filter to data
VX=cumtrapz(t,AX); %Integrate acceleration to get velocity
SX=cumtrapz(t,VX); %Integrate velocity to get displacement
figure(1);
plot(t,SX);
xlabel(Time (s));
ylabel(Displacement (m))
0 comentarios
Respuestas (2)
Image Analyst
el 14 de Abr. de 2020
I think this works great. It's well commented, practically self documenting but if you have any questions, ask.
% Initialization steps.
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
% Load data and plot it.
hFig1 = figure;
sa = load('acceleration.mat')
accel = sa.acceleration1;
st = load('time.mat')
t = st.time1;
plot(t, accel, 'b.-', 'MarkerSize', 9);
grid on;
hold on;
fontSize = 20;
xlabel('Time', 'FontSize', fontSize);
ylabel('Acceleration', 'FontSize', fontSize);
title('Original Signal', 'FontSize', fontSize);
hFig1.WindowState = 'maximized'; % Maximize the figure window.
% Draw a line at y=0
yline(0, 'LineWidth', 2);
% A moving trend is influenced by the huge outliers, so get rid of those first.
% Find outliers
outlierIndexes = isoutlier(accel);
plot(t(outlierIndexes), accel(outlierIndexes), 'ro', 'MarkerSize', 15);
% Extract the good data.
tGood = t(~outlierIndexes);
accelGood = accel(~outlierIndexes);
% plot(t(~outlierIndexes), accel(~outlierIndexes), 'mo', 'MarkerSize', 10); % Plot circles around the good data.
% Do a Savitzky-Golay filter (moving quadratic).
windowWidth = 51; % Smaller for tighter following of original data, bigger for smoother curve.
smoothedy = sgolayfilt(accelGood, 2, windowWidth);
hold on;
plot(tGood, smoothedy, 'r-', 'LineWidth', 2);
legend('Original Signal', 'X axis', 'Outliers', 'Smoothed Signal');
% Now it looks pretty reasonable since we didn't include the outliers.
% But smoothedy has fewer points so if we're to subtract it from the original
% we have to fill in the missing points.
smoothedy = interp1(tGood, smoothedy, t);
% Now subtract the smoothed signal to get the variation
signal = accel - smoothedy;
% Plot it.
hFig2 = figure;
plot(t, signal, 'b.-', 'MarkerSize', 9);
grid on;
hold on;
title('Corrected Signal', 'FontSize', fontSize);
xlabel('Time', 'FontSize', fontSize);
ylabel('Acceleration', 'FontSize', fontSize);
hFig2.Units = 'normalized';
hFig2.Position = [.2, .2, .5, .5]; % Size the figure window.
% Draw a line at y=0
yline(0, 'LineWidth', 2);
10 comentarios
Image Analyst
el 7 de Abr. de 2023
Same reply (not sure why you ignored it). Start a new discussion thread and attach your data and code, especially the code to turn acceleration into displacement.
Emily Keys
el 8 de Abr. de 2023
Hi , I have done so except the data that I used is too large to upload to even in zip file format. Apologies again. https://uk.mathworks.com/matlabcentral/answers/1943334-fixing-post-load-for-acceleration-signal-with-savitzky-golay-filter
Ameer Hamza
el 13 de Abr. de 2020
If by drift, you mean the signal continually move away from the actual value then you can try to use detrend() function: https://www.mathworks.com/help/matlab/ref/detrend.html
12 comentarios
Ameer Hamza
el 18 de Abr. de 2020
Yes, it can be a bit complicated because you need to estimate the model of your system. You can try to follow some example on Kalman filter in MATLAB: https://www.mathworks.com/discovery/kalman-filter.html
Ver también
Categorías
Más información sobre Measurements and Spatial Audio en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!