MATLAB Answers

do not understand the integration result

4 views (last 30 days)
cemile basgul
cemile basgul on 21 Apr 2020
Commented: cemile basgul on 4 Jun 2020
when I integrate this via: int(1/4624*exp(12028*(2367-t/643*t+2199060)),t,0,360)
I get this result: 1933501^(1/2)*pi^(1/2)*erf((720*1933501^(1/2))/643)*exp(26478763956))/55617472
What does this number mean? why am I getting a value like this?

  4 Comments

Show 1 older comment
David Welling
David Welling on 21 Apr 2020
exp(12028*(2367-t/643*t+2199060))=
exp(12028*(2367-t^2/643+2199060))=
exp(12028*(2199060+2367-t^2/643))=
exp(12028*(2201427-t^2/643))=
exp(12028*2201427-12028*t^2/643)=
exp(26478763956-12028*t^2/643)=
exp(26478763956-12028/643*t^2)=
exp(26478763956)/exp(12028/643*t^2)
Are you srue that is what you meant, or did you make a mistake with the brackets?
cemile basgul
cemile basgul on 29 Apr 2020
Not to be mistaken by the paranthesis, I wrote variable numbers as below. However, I am still getting those long numbers such as
This is for F(1)
(538948486624482741*exp(-4579610173792908711849542041234325/912795614384412005898158547664896))/39076167421235083376000 - (1851567729550599*exp(-28376783941740538497326829612455/3135926614906861015272882438144))/156304669684940333504 - (6612410559153235*exp(33062052795766175/1693660223635456)*ei(-52899284473225880/1851567729550599))/19538083710617541688 + (6612410559153235*exp(33062052795766175/1693660223635456)*ei(-13224821118306470000/538948486624482741))/19538083710617541688
A=4624;
E=10^5;
R=8.314; %Universal gas constant
Tref=616.15; %Melting point of PEEK in K (343C)
T=T0; %Temperature of constant points
syms t
for m=1:101
a(m)=sum(Temperature{m}>=485) ; %constant degree of healing points
b(m)=sum(Temperature{m}<485); %non-isothermal degree of healing points
timea(m)=a(m).*0.003;
timeb(m)=b(m).*0.003;
c(m)=(Temperature{m}(a(m)+1)-Temperature{m}(it(m)))/(time(m)-timea(m)); %slope of the curve
d(m)=Temperature{m}(a(m)+1)-(c(m)*timea(m)); %constant for the linear line equation
F(m)=int(1/(A*exp((E/R)*((1/(c(m)*t+d(m)))-(1/Tref)))),t,timea(m),time(m));
end
cemile basgul
cemile basgul on 29 Apr 2020
If I use Integral instead of Int, it works, I mean gives a number value such as 3.4059e-09
A=4624;
E=10^5;
R=8.314; %Universal gas constant
Tref=616.15; %Melting point of PEEK in K (343C)
T=T0; %Temperature of constant points
syms t
p=NaN(1,101);
for m=1:101
a(m)=sum(Temperature{m}>=485) ; %constant degree of healing points
b(m)=sum(Temperature{m}<485); %non-isothermal degree of healing points
timea(m)=a(m).*0.003;
timeb(m)=b(m).*0.003;
c(m)=(Temperature{m}(a(m)+1)-Temperature{m}(it(m)))/(time(m)-timea(m)); %slope of the curve
d(m)=Temperature{m}(a(m)+1)-(c(m)*timea(m)); %constant for the linear line equation
F=integral(@(t)(1./(A.*exp((E./R)*((1./(c(m).*t+d(m)))-(1./Tref))))),timea(m),time(m));
p(m)=F^(1/4);
end

Sign in to comment.

Answers (1)

Nishant Gupta
Nishant Gupta on 27 May 2020
If you use vpa function for evaluation, the result will be inf since its a very large number.
syms t;
>> expr = 1/4624*exp(12028*(2367-t/643*t+2199060));
>> F = int(expr,[0 360])
F =
(1933501^(1/2)*pi^(1/2)*erf((720*1933501^(1/2))/643)*exp(26478763956))/55617472
>> vpa(F)
ans =
Inf

  1 Comment

cemile basgul
cemile basgul on 4 Jun 2020
do you know why int and integral gives different results for this? I am not sure which one to use.

Sign in to comment.

Products


Release

R2018b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by