How to solve this problem of integeral?

1 visualización (últimos 30 días)
Hamzah Faraj
Hamzah Faraj el 24 de Abr. de 2020
Comentada: Hamzah Faraj el 27 de Abr. de 2020
Can anypody help with this piece of code?
The problem is with the use of the integeral function
%------------------------------------------------------------------------%
clear variables;
close all;
clc;
%------------------------------------------------------------------------%
x=-1:0.1:1;
n=length(x);
y=zeros(1,n);
for i=1:n
y = m_cost(x);
end
plot(y)
and here is my function:
function y =m_cost(x)
fun1=inline('0-x','x');
fun2=inline('x-4','x');
syms fun1;
syms fun2;
syms x;
if (x>=0)
y=x.^2+4*x+8*int(fun1,x,0,10);
else
y=x.^2+4*x+8*int(fun2,x,0,10);
end
  5 comentarios
Lazaros Christoforidis
Lazaros Christoforidis el 24 de Abr. de 2020
Is it a differential equation?
Hamzah Faraj
Hamzah Faraj el 27 de Abr. de 2020
Thank you. This is really informative.
If I have this cost function, for example, is using the integeral function the right option? I want to integerat int(p) over time dt (axis x).
% Assume this is the results of the temperature function v(t)=v(i-1)+A*(time);
v = -1:0.1:5;
% A is the heaating parameter
A = 4/3;
% Cost at each v(t) is given by the expression:
% y(v(t))=(50*int(p)+10*x+30)/(x/A);
% P = x-4 if x > 4 and x <= 5
% p = 0 if x >= 0 and x <= 4
% p = -x if x >= -1 and x < 0
y = cost(v)
function y= cost(v)
func1 = @(v) v-4;
func2 = @(v) -v;
% Cost of each v(t) at time t is given by the expression:
% y(v(t))=(50*int(p)+10*x+30)/(x/A);
% P = x-4 if x > 4 and x <= 5
% p = 0 if x >= 0 and x <= 4
% p = -x if x >= -1 and x < 0
if (v > 4 & v <= 5)
y = ((50*integeral(func1,0,inf)+((v./A)*10)+30)/(v./A);
elseif ( v>=0 & v<=4)
y = (((v./A)*10)+30)/(v.A);
else
y = ((integeral(func2,0,inf))+((v./A)*10)+30)/(v./A);
end
end

Iniciar sesión para comentar.

Respuesta aceptada

Ameer Hamza
Ameer Hamza el 24 de Abr. de 2020
There is no need to use inline. You can use an anonymous function. Also, int() is used for symbolic integration. Here you can use numeric integration using integral(). The function can be vectorized so there is no need to use a for-loop
%------------------------------------------------------------------------%
clear variables;
close all;
clc;
%------------------------------------------------------------------------%
x = -1:0.1:1;
n = length(x);
y = m_cost(x);
function y =m_cost(x)
fun= @(x) -x;
y = x.^2+4*x+8*integral(fun,0,10);
end

Más respuestas (1)

Walter Roberson
Walter Roberson el 24 de Abr. de 2020
int is only for use with Symbolic functions or symbolic expressions. inline objects cannot be used with int.
You should only use inline if you have a very specific reason to use it. You should be using symbolic or anonymous functions instead.
However your
syms fun
on the next line overwrites fun the same as if you had done
fun = sym('fun') ;
So when you int that it is just a symbolic constant and the integral is the constant times the difference in time. Your function is going to return a symbolic expression involving the two unresolved values x and fun. x is unresolved because the
syms x
that you did overwrote the x parameter passed to the function.
so you return a symbolic expression that contains unresolved variables and outside the function you assign that into part of y. But y is double precision and you cannot store a symbolic expression with unresolved variables in double precision.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by