Accept/Reject Method for Monte Carlo Simulation
6 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I have a probability distribution function given by f(m) = summation function from i = 0 to infinity of a_i * P_i(m), where P_i represents Legendre polynomials, and m is equal to cos(theta) and ranges from -1 to 1. I am given the first four coefficients and polynomials, shown below.
a0 = 1, a1 = 1/2, a2 = 1/3, a3 = 1/4
P0(m) = 1, P1(m) = m, P2(m) = 1/2(3m^2 - 1), P3(m) = 1/2(5m^3 - 3m)
I am trying to generate 10^4 random numbers to represent the probability density function, using the rejection sampling method. The code I am using is given below.
clear all;
close all;
Numtrials = 1e3; % number of trials
rn_attempts = zeros(Numtrials,1); % array of attempted random numbers
NRN = 1e4; % number of random numbers
RN_accept = zeros(NRN,1); % array for accepted random numbers
nbin = 100; % number of bins
a = -1; % lower bound of target random number
b = 1; % upper bound of target random number
% positions of each bin, use the center of the bin
xbin = zeros(nbin,1);
bin_length = (b-a)/nbin;
analytical_pdf = zeros(nbin,1); % analytical pdf at the center of each bin
for i=1:nbin
xbin(i) = (i-0.5)*bin_length+a;
analytical_pdf(i) = probdist(xbin(i));
end
pdf_max = 25/12; %sum of all coefficients a_i
n = 0;
nacc = 0; % # of accepted random numbers
while(n < Numtrials & nacc < NRN)
n=n+1; % track the trial times
% generate a random number in (0 1) and linearly map it into [1 b]
rand1 = rand(1);
% map and store the random number
rand1 = a+rand1*(b-a);
rn_attempts(n) = rand1;
probab = probdist(rand1)/pdf_max;
% generate second random number to compare to scaled pdf
rand2 = rand(1);
if(rand2 < probab)
nacc = nacc+1;
% store the random number if accepted
RN_accept(nacc) = rand1;
end
end
% counts of accepted and tried random numbers in each bin
counts_try = hist(rn_attempts,nbin);
counts_accept = hist(RN_accept,nbin);
rate_accept = counts_accept./counts_try;
% plot result
plot(xbin,rate_accept,'ro',xbin,analytical_pdf/pdf_max,'g-');
axis([-1 1 -1 1]);
title('Rejection sampling');
xlabel('x');
ylabel('Scaled probabilty distribution function');
legend('Rejection sampling','Analytical','Location','Northwest');
set(gca,'fontsize', 12);
function f=probdist(m)
a0 = 1;
a1 = 1/2;
a2 = 1/3;
a3 = 1/4;
f=a0+a1*m+a2*0.5*(3*m^2-1)+a3*0.5*(5*m^3-3*m);
end
However, the graph I get shows the accepted rate to be less than and greater than the analytical solution. What could I do to correct this?
0 comentarios
Respuestas (0)
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!