Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
%Assignment#9
% Human group optimization (originally named as Seeker optimization algorithm)
clc;
clear all;
close all;
human=randi([2 30],5,5);
for r=1:5;
for c=1:5;
X(r,c)=human(r,c)^3;
end
human_group=sum(X,2);
end
minimum=min(human_group);
[val loc]=min(human_group);
Gbest=find(human_group==minimum);
LB=2; %Lower bound
UB=12; %upper bound
Ml=1; %Minimum no. of mental process
Mh=100; %Miximum no. of mental process
Npop=50; %no. of bids
Nvar=10; %no. of variable
K=10; %no. of cluster
iter_min=1; %Current iteration
iter_max=10;%Maximum no. of iteration
a=rand(); %a is a random number
N=20;
t=iter_min; % t is Current iteration
%X = initialise population of Npop bids
X=Npop*human;
% Calculate the cost function values of bids
bids = 0;
for r=1:5;
bids= bids + X;
end
bids= bids/X;
bid=max(bids);
bestbids=find(bids==bid);
%find the best bid in the initial population
Gbest;
%generate random number between LowerBound and UpperBound
for r=1:5;
Beta=randsrc(1,1,[LB:UB]);
end
Beta
Y=gamma(X);
for r=1:5;
Q=((Y(1+Beta)*sin(pi*Beta/2))*(Y*(1+Beta/2)*Beta*2^(Beta-1/2)))^1/Beta;
end
u=N*(0*Q^2);
v=N*(0*Q^2);
for iter_min=1:iter_max;
MentalSearch=(2-iter_min*(2/iter_max))*a*u/v^1/Beta*(X-Gbest);
end
%generate integer random number between Ml and Mh
for r=1:5;
qi=randsrc(1,1,[Ml:Mh]);
end
qi
for r=1:5;
for c=1:qi;
MentalSearch=(2-iter_min*(2/iter_max))*a*u/v^1/Beta*(X-Gbest);
NextSearch=X+MentalSearch;
end
if t<X;
X=t;
end
end
%Clustering
%Cluster Npop bids into K clusters
for r=5;
K=K/Npop;
end
%Calculate the mean cost function value of each cluster
for r=1:5;
MeancostK=mean(K);
end
% Select cluster with lowest mean cost function value as the winner cluster
lowestmeanK=min(MeancostK);
winner=find(bids==lowestmeanK);
C=0;
r=rand();
bidn=0;
bidn=bidn+C*(r*winner-bidn);
for r=1:5;
for c=1:5;
X=X+C*(r*winner-X);
end
end
%generate random number between LowerBound and UpperBound
for r=1:5;
Beta=randsrc(1,1,[LB:UB]);
end
Beta
% find best bid in current bids
for r=1:5;
bestb=max(bestbids);
xplus=bestb;
end
if xplus<Gbest;
Gbest=xplus;
end
Gbest
0 comentarios
Respuestas (1)
Mehmed Saad
el 13 de Mayo de 2020
Editada: Mehmed Saad
el 13 de Mayo de 2020
Y=gamma(X)
Y =
Inf Inf Inf Inf 9.33262154439440e+155
Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf
Inf Inf 3.80892263763056e+260 Inf Inf
Inf Inf Inf Inf Inf
So it is giving you inf in Y which are then shifted to Q, Then you multiply Q with zero in u=N*(0*Q^2) making u NaN. Similarly v also contains NaNs. The step that contains u/v will then give you warning
Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN.
0 comentarios
Ver también
Categorías
Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!