Problem with cholesky decomposition
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Peter Ouwehand
el 19 de Mayo de 2020
Comentada: Christine Tobler
el 19 de Mayo de 2020
When I apply the chol function to A = [1 -1; 0 1], it correctly informs me that the matrix is not positive definite.
But when I run chol(A, 'lower'), the answer is the identity matrix [1 0; 0 1].
Can anyone replicate this? Any reasons why this should be so?
0 comentarios
Respuesta aceptada
David Goodmanson
el 19 de Mayo de 2020
Hi Peter,
when you use the 'lower' option, chol assumes that the upper triangle is the complex conjugate transpose of the lower triangle. In this case that means that chol assumes the matrix is [1 0; 0 1], the identity matrix. So of course the cholesky decomposition is also the identity matrix.
1 comentario
Christine Tobler
el 19 de Mayo de 2020
When chol(A) is called without the 'lower' or 'upper' option, this is treated as if the 'upper' option had been chosen: So in the first example, chol assumes the matrix is [1 -1; -1 1]. This is because the Cholesky decomposition only works for symmetric matrices.
Más respuestas (0)
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!