numerical errors in eigen decomp

3 visualizaciones (últimos 30 días)
Harish Guruprasad
Harish Guruprasad el 12 de Abr. de 2011
Hi, I have computed a matrix, which (If it was done right) i know to be Positive semi definite. I did a eigen decomposition using eig and got the following result
min(eig(m2))
ans =
-9.8601e-14
A sample of the other eigen values is below -0.0000, -0.0000, -0.0000, 0.0000, 0.0000, 0.0000, 1.0047, 4.6499, 10.6999, 33.8846, 38.4610, 46.6943, 49.3577, 51.3520, 156.0164, 217.2181, 315.0000
Is it safe to assume the negative eigen values are through numerical issues and not due to a problem in the matrix computation?

Respuesta aceptada

the cyclist
the cyclist el 12 de Abr. de 2011
Yes. "eig" was probably about the first MATLAB function ever written, decades ago, so I think you will find it reliable. :-)
A value of e-14 is about the numerical error you would expect in a double-precision calculation of this type.
  2 comentarios
Andrew Newell
Andrew Newell el 12 de Abr. de 2011
In addition, judging by the spread of eigenvalues, your matrix is ill-conditioned. That would contribute to the error.
Matt Tearle
Matt Tearle el 12 de Abr. de 2011
Yep. Largest evalue is 10^2, smallest is 10^-13. That's as much accuracy as you can expect from double precision arithmetic. I'd call that good and move on.

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Linear Algebra en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by