Phase portrait of a 2 dimensional system that converges to a unit circle

4 visualizaciones (últimos 30 días)
The dynamical system contains two ODES:
dxdt=(1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dydt=(1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
where :
x(t)=cos(3*t);
y(t)=sin(3*t);
This system has a unstable solution: x(t)=y(t)=0.
I want to produce a phase portrait of this system which will look like this:
Please help me. I do not know what code to use in order to produce this plot. The aatachment is the question. Thank you for the help!!!!
  3 comentarios
Penglin Cai
Penglin Cai el 6 de Jun. de 2020
Yes, the picture below is the original question, l really do not know what command to use in order to plot this graph. Thank you for your help.
Chen
Chen el 21 de Oct. de 2024
Hi, I've been studying coupled oscillators, can you tell me which book this is from?

Iniciar sesión para comentar.

Respuesta aceptada

Ameer Hamza
Ameer Hamza el 6 de Jun. de 2020
Editada: Ameer Hamza el 6 de Jun. de 2020
try this
dx_dt = @(x,y) (1-(x.^2+y.^2)).*x-3.*y.*(x.^2+y.^2);
dy_dt = @(x,y) (1-(x.^2+y.^2)).*y+3.*x.*(x.^2+y.^2);
[x, y] = meshgrid(-2:0.02:2, -2:0.02:2);
dx = dx_dt(x, y);
dy = dy_dt(x, y);
streamslice(x, y, dx, dy);
axis tight
axis equal
hold on
fplot(@(t) cos(3*t), @(t) sin(3*t), [0, 2*pi/3], 'Color', 'r', 'LineWidth', 2)

Más respuestas (0)

Categorías

Más información sobre Mathematics en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by