How can we find the doubling time of a curve?

2 visualizaciones (últimos 30 días)
SAS
SAS el 7 de Jun. de 2020
Editada: SAS el 7 de Jun. de 2020
Lets say I have a graph, how can I find the doubling time of the curve?
Alpha = [1.05 ]; % Initial conditions
x0 = 100; % Initial conditions
figure
n = 1:30;
x = Alpha.^n*x0;
subplot(2,2,1);
plot(n,log2(x));
title('Figure 1A-Alpha=1.05'),xlabel('X-Axis','fontweight','bold'), ylabel('Y-Axis','fontweight','bold')
Note: Doubling time refers to the days it takes for the values to double. Doubling time should stay the same throughout a single curve

Respuesta aceptada

KSSV
KSSV el 7 de Jun. de 2020
Editada: KSSV el 7 de Jun. de 2020
There is a formula for doubling time, if (n1,x1) and (n2,x2) are two data points selected, then doubling time Td is given by:
In your case: Follow the below:
Alpha = [1.05 ]; % Initial conditions
x0 = 100; % Initial conditions
figure
n = 1:30;
x = Alpha.^n*x0;
plot(n,log2(x));
title('Figure 1A-Alpha=1.05'),xlabel('X-Axis','fontweight','bold'), ylabel('Y-Axis','fontweight','bold')
% pick any two quantities randomly
idx = [5 15];
x1 = x(idx(1)) ; x2 = x(idx(2)) ;
n1 = n(idx(1)) ; n2 = n(idx(2)) ;
% doubling time
Td = (n2-n1)*log(2)/log(x2/x1)
The doubling time is found to be 14.207. Change the values of (n1,q1) and (n2,q2) you will get the same value for the data picked.
  7 comentarios
KSSV
KSSV el 7 de Jun. de 2020
1/log2(Alpha) is another formula for doubling time. How you can replace this with Alpha?
SAS
SAS el 7 de Jun. de 2020
Editada: SAS el 7 de Jun. de 2020
Sorry man... I just got it.. it's formula for exponential growth.. Thanks once again... (Y)

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Introduction to Installation and Licensing en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by