[Issue] How can I apply 'predictAndUpdateState' on a multivariate multistep problem?

2 visualizaciones (últimos 30 días)
Hello,
I have this code below (also attached with data samples) of a multivariate LSTM neural network model.
I am trying to modify it to forecast new steps in the future, but I get this error:
Conversion to double from cell is not possible.
Error in LSTM_multi_motores (line 82)
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest(:,i), 'ExecutionEnvironment', 'cpu');
I tried to modify this line from
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest(:,i), 'ExecutionEnvironment', 'cpu');
to
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest{:,i}, 'ExecutionEnvironment', 'cpu');
but I got a different error here:
Index in position 2 exceeds array bounds (must not exceed 389).
Error in LSTM_multi_motores (line 82)
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest{:,i}, 'ExecutionEnvironment', 'cpu');
Could you please tell me how to fix it?
Here's the code:
%% Multivariate Multi-step LSTM NN Model
% From: Marcelo Olmedo -- MathWorks | Edited by: Mohamed Nedal
close all; clear; clc
%% Import data
[~,~,data_train] = xlsread('ET_1.xlsx');
data_mat_train = cell2mat(data_train);
XTrain = (data_mat_train(:, 4:8))';
YTrain = (data_mat_train(:, 3))';
XTrain = num2cell(XTrain, 1);
YTrain = num2cell(YTrain, 1);
miniBatchSize = 1; % one predictor sequence
%% Define Network Architecture
numResponses = size(YTrain{1}, 1);
featureDimension = size(XTrain{1}, 1);
fprintf('Number of input features: %d \n', featureDimension)
fprintf('Number of target features: %d \n', numResponses)
maxepochs = 100;
miniBatchSize = 1;
numHiddenUnits = 100;
% A fully connected layer multiplies the input by a weight matrix and then
% adds a bias vector
outputSize = 500;
layers = [ ...
sequenceInputLayer(featureDimension)
lstmLayer(numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer(outputSize)
dropoutLayer(0.1)
fullyConnectedLayer(numResponses)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs', maxepochs, ...
'GradientThreshold', 1, ...
'InitialLearnRate', 0.005, ...
'LearnRateSchedule', 'piecewise', ...
'LearnRateDropPeriod', 125, ...
'LearnRateDropFactor', 0.2, ...
'Plots', 'training-progress');
%% Train the Network
net = trainNetwork(XTrain, YTrain, layers, options);
%% Test the Network
[~,~,data_test] = xlsread('ET_2_m_input.xlsx');
data_mat_test = cell2mat(data_test);
XTest = (data_mat_test(:, 4:8))';
YTest = (data_mat_test(:, 3))';
XTest = num2cell(XTest, 1);
YTest = num2cell(YTest, 1);
net = resetState(net);
YPred = predict(net, XTest);
rmse = sqrt(mean((cell2mat(YPred)' - cell2mat(YTest)).^2));
fprintf('RMSE = %.2f \n', mean(rmse))
%% Plot
y1 = (cell2mat(YTest(1:end, 1:end))');
y2 = (cell2mat(YPred(1:end, 1:end))); % have to transpose as plot plots columns
figure
plot(y1)
hold on
plot(y2)
legend('Test', 'Predict')
%% Forecast the Future
clc
net = resetState(net);
Yforecast = [];
numTimeStepsTest = numel(XTest) + 500; % forecast new 500 steps in the future
k = 1;
for i = 1:numTimeStepsTest
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest(:,i), 'ExecutionEnvironment', 'cpu');
if k ~= numel(XTest)
[net, Yforecast(:,i)] = predictAndUpdateState(net, XTest(:,i), 'ExecutionEnvironment', 'cpu');
else
[net, Yforecast(:,i)] = predictAndUpdateState(net, Yforecast(:,i-1), 'ExecutionEnvironment', 'cpu');
end
k = k + 1;
end
fprintf('New data is predicted successfully \n')

Respuestas (1)

拓 李
拓 李 el 27 de Mayo de 2022
I suggest you modify it with the help of MATLAB. In addition, how can your time step input be the later time step and output be the previous time step?

Categorías

Más información sobre Sequence and Numeric Feature Data Workflows en Help Center y File Exchange.

Productos


Versión

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by