Unable to perform assignment because the indices on the left side are not compatible with the size of the right side

1 visualización (últimos 30 días)
Can anyone solve the problem in my code that returns the error by ?
close all
clear all
clc
%%
mu0 = 4*pi*1e-7; % Vs/Am
M0 = 1e3; % A/m
maxnum = 31;
rho1_min = 0;
rho1_max = 0.25;
xlim = [-1, 1];
ylim = xlim;
zlim = xlim;
x = linspace(min(xlim), max(xlim), maxnum);
y = linspace(min(ylim), max(ylim), maxnum);
z = linspace(min(zlim), max(zlim), maxnum);
[Xg, Yg, Zg] = ndgrid(x, y, z);
rho = sqrt(Xg.^2 + Yg.^2 + Zg.^2);
phi = angle(Xg + 1i*Yg);
theta = angle(Zg + 1i*sqrt(Xg.^2 + Yg.^2));
%%
RHO = sqrt(x.^2 + y.^2 + z.^2);
THETA = linspace(0, pi, 31); % Trapz
PHI = linspace(0, 2*pi, 31); % Trapz
%%
for i=1:numel(RHO)
for j=1:numel(THETA)
for k=1:numel(PHI)
F_x{i,j,k} = (RHO(i)>= rho1_max) .* 2/3*M0*mu0 .* sin(theta) .* (RHO(i) .* (sin(THETA(j)) .* cos(theta) .* cos(PHI(k)-phi) - cos(THETA(j)) .* sin(theta)) ./ ...
(RHO(i).^2 + rho1_max.^2 - 2.*RHO(i) .* rho1_max .* (sin(THETA(j)) .* sin(theta) .* cos(PHI(k)-phi) + cos(THETA(j)).* cos(theta))).^3/2) .* rho1_max.^2 .* sin(theta);
B1x(i,j,k) = -trapz(PHI,trapz(THETA,F_x{i,j,k},2)) ;
end
end
end
  1 comentario
madhan ravi
madhan ravi el 9 de Jul. de 2020
Couple of suggestions:
1) Never name a variable which is the same as MATLAB’s in - built function (xlim.., etc)
2) i and j are imaginary units use ii and jj instead.
3) preallocation is really significant
4) Use cell arrays for preallocation which avoids ambiguities

Iniciar sesión para comentar.

Respuesta aceptada

Subhadeep Koley
Subhadeep Koley el 9 de Jul. de 2020
Editada: Subhadeep Koley el 9 de Jul. de 2020
Pre allocate B1x as cell array instead of numeric array to solve the problem.
close
clear
clc
%%
mu0 = 4*pi*1e-7; % Vs/Am
M0 = 1e3; % A/m
maxnum = 31;
rho1_min = 0;
rho1_max = 0.25;
xlimit = [-1, 1];
ylimit = xlimit;
zlimit = xlimit;
x = linspace(min(xlimit), max(xlimit), maxnum);
y = linspace(min(ylimit), max(ylimit), maxnum);
z = linspace(min(zlimit), max(zlimit), maxnum);
[Xg, Yg, Zg] = ndgrid(x, y, z);
rho = sqrt(Xg.^2 + Yg.^2 + Zg.^2);
phi = angle(Xg + 1i*Yg);
theta = angle(Zg + 1i*sqrt(Xg.^2 + Yg.^2));
%%
RHO = sqrt(x.^2 + y.^2 + z.^2);
THETA = linspace(0, pi, 31); % Trapz
PHI = linspace(0, 2*pi, 31); % Trapz
%%
% Pre-allocate F_x and B1x as cell array
F_x = cell(numel(RHO), numel(THETA), numel(PHI));
B1x = cell(numel(RHO), numel(THETA), numel(PHI));
for ii = 1:numel(RHO)
for jj = 1:numel(THETA)
for kk = 1:numel(PHI)
F_x{ii, jj, kk} = (RHO(ii)>= rho1_max) .* 2/3*M0*mu0 .* sin(theta) .* (RHO(ii) .* (sin(THETA(jj)) .* cos(theta) .* cos(PHI(kk)-phi) - cos(THETA(jj)) .* sin(theta)) ./ ...
(RHO(ii).^2 + rho1_max.^2 - 2.*RHO(ii) .* rho1_max .* (sin(THETA(jj)) .* sin(theta) .* cos(PHI(kk)-phi) + cos(THETA(jj)).* cos(theta))).^3/2) .* rho1_max.^2 .* sin(theta);
B1x{ii, jj, kk} = squeeze(-trapz(PHI,trapz(THETA,F_x{ii,jj,kk},2)));
end
end
end

Más respuestas (0)

Categorías

Más información sobre Numerical Integration and Differentiation en Help Center y File Exchange.

Productos


Versión

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by