Neural network performance evaluation????
4 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
for evaluating NN performance for a given number of trail or retrain which approach is right and why?????
for trail=1:100
net=newff(....);
[net,tr,Y,E,Pf,Af] = train(...);
......;
end
OR
net=newff(....);
for trail=1:100
[net,tr,Y,E,Pf,Af] = train(...);
........;
end
Note: i am getting decent result for both approach; but the later giving me best result.
0 comentarios
Respuesta aceptada
Más respuestas (1)
Greg Heath
el 27 de Dic. de 2012
The first example is the correct one because it containss 100 random weight initializations. Therefore each net is a valid independent result.
The 2nd example just keeps training the same net more and more.
What, exactly, do you mean by decent results?
Is this regression or classification?
Are you using validation stopping?
How many acceptable solutions out of 100?
If regression, what are the means and standard deviations of the training, validation and testing NORMALIZED (with average target variance) mean-square-error?
I usually shoot for (but don't always get) NMSEtrn <= 0.01
For an I-H-O net
Ntrneq = prod(size(ttrn)) % Ntrn*O = No. of training equations
Nw = (I+1)*H +(H+1)*O % No. of unknown weights
NMSEtrn = sse(trn-ytrn)/(Ntrneq-Nw)/mean(var(ttrn',0))
NMSEi = mse(yi-ti)/mean(var(ti',1)) for i = val and test
I have posted many example in NEWSGROUP and ANSWERS. Try searching on
heath newff Ntrials
Hope this helps.
Thank you for formally accepting my answer.
Greg
8 comentarios
Ver también
Categorías
Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!