Wrong Hessian output in fminunc
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Can somebody explain weird Matlab's output for the following optimization problem? The goal is to minimize and to evaluate Hessian matrix at the solution. However, Matlab returns a matrix of NaNs for the Hessian at the solution point. Here is the code
[xOpt,~,~,~,grad,hessian] = fminunc(@(x) x(1)^2+x(2)^2,[1,1])
0 comentarios
Respuesta aceptada
Matt J
el 13 de Ag. de 2020
Editada: Matt J
el 13 de Ag. de 2020
Another solution would be to use standalone routines for numerical gradient and hessian estimation
https://www.mathworks.com/matlabcentral/fileexchange/13490-adaptive-robust-numerical-differentiation
fun=@(x) (x(1)^2+x(2)^2);
xOpt = fminunc(fun ,[1,1]);
g=gradest(fun,xOpt)
H=hessian(fun,xOpt)
No hidden scale factors if you go that route:
xOpt =
0 0
g =
0 0
H =
2.0000 0
0 2.0000
3 comentarios
Matt J
el 16 de Ag. de 2020
There is no requirement in the solution I've given you that the objective be in analytic form.
Más respuestas (2)
Bruno Luong
el 12 de Ag. de 2020
Editada: Bruno Luong
el 13 de Ag. de 2020
I guess the hessian is estimated from BFGS formula, that needs more than 1 FMINUNC iteration. In you case the minimum is reached in 1 iteration (since the gradient point directly to the minimum), the hessian estimation is not yet in the update cycle.
A small modification make # iteration > 1, and hessian starts well.
[xOpt,~,~,~,grad,hessian] = fminunc(@(x) 2*x(1)^2+x(2)^2,[1,1])
2 comentarios
Bruno Luong
el 13 de Ag. de 2020
Editada: Bruno Luong
el 13 de Ag. de 2020
Not 100% satisfied answer but if you use trust-region algorithm and suppy the gradient, you 'll get back the hessian even with 1 iteration
options = optimoptions('fminunc', ...
'Algorithm', 'trust-region', ...
'SpecifyObjectiveGradient', true ...
);
[xOpt,out,b,c,grad,hessian] = fminunc(@fun,[1,1],options)
function [f,g] = fun(x)
% Calculate objective f
f = x(1)^2+x(2)^2;
if nargout > 1 % gradient required
g = 2*x;
end
end
If your function is quadratic and the -gradient points toward the minimum at any point, meaning if FMINUNC converge in 1 iteration regardless the starting point, then you must have hessian that is a scale of eye matrix. The NAN likely happens only for the trivial case as you have showed.
Matt J
el 13 de Ag. de 2020
Editada: Matt J
el 13 de Ag. de 2020
Just run fmincon (twice) with no constraints. Running a second time is important, because the hessian output is not the Hessian calculated at the final point, but rather the Hessian at the point just prior to that.
fun=@(x) x(1)^2+x(2)^2;
xOpt = fmincon(fun ,[1,1]);
[xOpt,~,~,~,~,grad,hessian] = fmincon(fun,xOpt)
xOpt =
1.0e-08 *
0.5588 0.5588
grad =
1.0e-07 *
0.2608
0.2608
hessian =
1 0
0 1
4 comentarios
Matt J
el 17 de Ag. de 2020
Alex's comment moved here:
Isn’t it explicitly stated in the documentation?
Matt J
el 17 de Ag. de 2020
Not as far as I can see. The documentation on the meaning of the Hessian output is here,
but there is no mention that I can see of any pre-scaling of the objective.
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!