Three implicit terms in function
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I have a 6*6* matrix whose value is equal to zero having three symbolic variables. Laplace operator was used such as s=+j*omg and s=-j*omg.
I am getting two values of detrminants equal to zero as follow where omg, tau and g are symbolic variables and have many values. So I have to calculate multiple roots and find the values for each tau, g, omg such that g and tau are not equal to zero. So that I can plot graph of any two terms.
BB = [(1/(3060513257434037/1125899906842624)^(omg*tau*1i)*(415471748849251781954970538364364750141971222886921968877913815034103432230921157463443783955775488000000000000*g*omg^2 - (3060513257434037/1125899906842624)^(omg*tau*1i)*omg^3*14416868914402420241003611474318273084006220897994068051895406217840020735923525505334100096046141852876800000i + 153597163097383768917367315384135787927784997750594923001462905536925266721629647298782932557748093197484032000*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^4 + (3060513257434037/1125899906842624)^(omg*tau*1i)*omg^5*1020089796904656734398285362073408091468317363995185418719672833901083874571318776893238288500520281702400i - 3034381761051861338003128535472243811511596733016943404548037797001864849499992165140975749805899434164224*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^6 - (3060513257434037/1125899906842624)^(omg*tau*1i)*omg^7*20138564401186169183029907761753332619108713350320921427946365490743678057071014432158535417856819200i + 18234171715502937192873222171870623248454505078072876437760102455689841714551172835868519597064253888*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^8 + (3060513257434037/1125899906842624)^(omg*tau*1i)*omg^9*120754023534137043695102734031600801099271089601224819533868856436917062711769136844552469970275i - 815655102533801021902264952870131350812385933753890237185774758250530342027773798586835218015*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^10 - (3060513257434037/1125899906842624)^(omg*tau*1i)*omg^11*3156623583759484531072146569974352953042792841242974833079681960393770303236589309952000i + 8801092109510664108267766067039578056141400755845539512174201699431408092997222400000*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^12 - 2170283945562694887224147982022591710596991471706572360086672958818047374670706508032874667750322951788953600000000*(3060513257434037/1125899906842624)^(omg*tau*1i)*omg^2 + g*omg^3*206895362016434127335186075749450233497402414136033348958811734844246962828967896651574869072281600000000i - 214235712397832948539558443582919426441018806180816869738833483894637504956073211043999522139588788224000000*g*omg^4 - g*omg^5*106678880606199282947799258056993076520520561649699416339075206043061307366147660114328936880537600000i + 15158730466533731898353025174186179591927852176337941036669713768225053479126903772805742540619776000000*g*omg^6 + g*omg^7*7545826795347200818861531013730433072549203597339557654598927330593867831447609386276067737600000i - 299270187424941919479901835049386500533504971079931117500011987386055460876113222746863828992000000*g*omg^8 - g*omg^9*148826527152342255940060357998100005507429083077643983781713318270480366325293809401856000000i + 1794609525704694192283486135159142431037879552512514698928166517155777043046329346949120000000*g*omg^10 + g*omg^11*889667844788438324018621409757919153157657992704388809370188608689490633991127040000000i - 48093399505522754689987792716063268066346452217735188591115856281045945863372800000000*g*omg^12 + (3060513257434037/1125899906842624)^(omg*tau*1i)*omg*27958966383092401136602350960523636561666395079908910387602897859845160389832286845179828974949236736000000000000i + 4208728815842920551203851553631014918938168487844519544733266946295467768499231325104685531472005693440000000000000000*(3060513257434037/1125899906842624)^(omg*tau*1i)))/170141183460469231731687303715884105728000000000 == 0;
(2235132896710765910645820482519568583342843307045330919230224470621400785190484709146882706521837*omg^4)/2475880078570760549798248448000000 - (2353026568689486037527593979772274865180786123195987936004438047350172823842642060577617*omg^2)/184467440737095516160 + (omg^3*125046404779470719118395732486605518817056160469446020772546891516169467183819444822593i)/1475739525896764129280000 - (omg*5384701057131374486576229828254667391691487766883516980292364263325375i)/32768 - (omg^5*4750163279961127482346656555651724764464038256533376028387215146334301096253650155352606850213i)/792281625142643375935439503360000000 - (1446905975843363446237148540245172410732076994427177145265597246647770333051677782602775454428624837*omg^6)/81129638414606681695789005144064000000000 + (omg^7*24583208497541710428503305373234048607310441101465968539973590686942966378260515664256024680001i)/207691874341393105141219853168803840000000 + (284908933054733393638644096435478488257101641844888694340001600870153776789862075560445618704128967*omg^8)/2658455991569831745807614120560689152000000000 - (omg^9*4830160941365481747804109361264032043970843584048992781354754257476682508470765473782098798811i)/6805647338418769269267492148635364229120000000 - (163131020506760204380452990574026270162477186750778047437154951650106068405554759717367043603*omg^10)/34028236692093846346337460743176821145600000000 + (omg^11*770660054628780403093785783685144763926463096006585652607344228611760327938620437i)/41538374868278621028243970633760768000000 + (78169400814604231693285694744584706726987739563177544185760951651*omg^12)/1511157274518286468382720000 + (20004237053892677648718391384339415945657377238630058491724603816375*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^2)/8192 - ((3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^3*49808246632786000992762879263839193142004051636800643614627087i)/40960 - (2835386044991579579976157434869644832772960525980751469726781270920775455112259*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^4)/2251799813685248000 + ((3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^5*7059416144504578172980220606588367533239007917933050030090205642878735483i)/11258999068426240000 + (6574051401575230516354409425379663915008718051848921845535919029305151356816713*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^6)/73786976294838206464000 - ((3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^7*16362403609429533978646329207764789187365587515070401485471374084042115569i)/368934881474191032320000 - (1063221288521780818853918884234795784967903994839599297606056848714414758476157*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^8)/604462909807314587353088000 + ((3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^9*528738038782500495713848771110932053955725546777145438361292371604635201i)/604462909807314587353088000 + (41784009097718964151187942716273070104370814573776784793663921699760878529547*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^10)/3961408125713216879677197516800 - ((3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^11*20714193694024307746873735677402446818483481013783924499763841943104999i)/3961408125713216879677197516800 - (427155195708219845318501064178058506704851035864358164949513397*(3060513257434037/1125899906842624)^(omg*tau*1i)*g*omg^12)/1511157274518286468382720 + 12665182584745801536344831545209892720594326964207655782573139791242421875/512 == 0]
0 comentarios
Respuestas (1)
Ayush Gupta
el 26 de Ag. de 2020
The Symbolic toolbox can be used to solve for such questions. Refer to the following documentation of Symbolic toolbox, it might help.
After solving the equation, we can get the relation between two terms using the condition where two variables cannot be zero. Once the condition is acquired, the graph can be plotted using the fplot function in MATLAB. Refer to the documentation of fplot, it also contain some example on how to use it.
0 comentarios
Ver también
Categorías
Más información sobre Line Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!