
Linear segmentation of noisy data
17 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Omar Alahmad
el 2 de Sept. de 2020
Editada: Bruno Luong
el 3 de Sept. de 2020
Hi,
I would like to divide my noisy data into a set of linear segments.

As seen in the above figure. I can measure the red noisy signal. The signal in its nature should be composed of linear segments.
Is there a robust way to perform this segmentation? I.e. convert the red noisy data into the black lined segments.
Thanks!
Regards,
Omar
0 comentarios
Respuesta aceptada
Star Strider
el 2 de Sept. de 2020
This would be easier with your data. Lacking them, I created my own.
Try this:
x = 0:32;
y = [-0.5*(0:11)+10+randi([-1 1], 1, 12), 4.5*(12:14)-50+randi([-1 1], 1, 3), 0*(15:28)+13+randi([-1 1], 1, 14), -4*(29:32)+129+randi([-1 1], 1, 4)];
Lv = ischange(y, 'linear', 'Threshold',5);
Idx = [1 find(Lv), numel(y)];
for k = 1:numel(Idx)-1
P(:,k) = [x(Idx(k)) 1; x(Idx(k+1)) 1] \ y(Idx(k:k+1)).';
end
Slopes = P(1,:)
Intercepts = P(2,:)
figure
plot(x, y, '-o')
hold on
plot(x(Idx), y(Idx), 'p')
hold off
grid
axis([0 35 0 15])
In this run, that produced this plot:

and these data:
Slopes =
-0.6667 3.6667 0 -3.0000
Intercepts =
11.0000 -41.0000 14.0000 98.0000
You will likely need to adjust the 'Threshold' value (here 5) to work with your data. It should produce the appropriate slopes and intercepts for the regression lines. The ischange function was introduced in R2017b. A similar function, findchangepts in the Signal Processing Toolbox (with significantly different arguments and outputs) was introduced in R2016a.
5 comentarios
Image Analyst
el 3 de Sept. de 2020
Omar, you don't seem to be getting the hint, so let me make it very clear: attach any data that you are having trouble with in a .mat file with the paper clip icon.
Más respuestas (1)
Bruno Luong
el 3 de Sept. de 2020
Editada: Bruno Luong
el 3 de Sept. de 2020
Similar topic discussed here
Using my solution of BSFK
% Generate random data
N = 5; % number of linear segments + 1
breaks = cumsum([0, 1+rand(1,N)]);
yb = rand(size(breaks));
coefs = zeros(N,2);
for k=1:N
coefs(k,:)= polyfit(breaks([k,k+1])-breaks(k),yb([k,k+1]),1);
end
pp = struct('form', 'pp',...
'breaks', breaks, ...
'pieces', N, ...
'coefs', coefs, ...
'order', 2,...
'dim', 1);
n = 1000; % number of data point
sigma = 0.01; % Gaussian noise std
x = linspace(min(breaks),max(breaks),n);
y = ppval(pp,x) + 0.05*randn(size(x));
%%
close all
BSFK(x,y,2,[],[],struct('annimation',1)); % FEX

0 comentarios
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


