curvature of a discrete function
41 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
David Kusnirak
el 16 de En. de 2013
Hello,
I need to compute a curvature of a simple 2D discrete function like this one:
x=1:0.5:20;
y=exp(x);
can anybody help how to do that? thanks
1 comentario
Respuesta aceptada
Jan
el 16 de En. de 2013
Editada: Jan
el 13 de Mzo. de 2022
Your function seems to be a 1D function.
Are you looking for the 2nd derivative? While diff calculates the one-sided differential quotient, gradient uses the two-sided inside the interval:
gradient(gradient(y))
If you mean the curvature as reciprocal radius of the local fitting circle:
dx = gradient(x);
ddx = gradient(dx);
dy = gradient(y);
ddy = gradient(dy);
num = dx .* ddy - ddx .* dy;
denom = dx .* dx + dy .* dy;
denom = sqrt(denom) .^ 3;
curvature = num ./ denom;
curvature(denom < 0) = NaN;
Please test this, because I'm not sure if I remember the formulas correctly.
3 comentarios
Jan
el 16 de En. de 2013
Editada: Jan
el 16 de En. de 2013
Therefore I'm using an efficient C-Mex function: FEX: DGradient, which is 10 to 20 times faster and handles unevenly spaced data more accurate.
Jan
el 16 de En. de 2013
Editada: Jan
el 13 de Mzo. de 2022
x = rand(1, 1e6);
tic; ddx = gradient(gradient(x)); toc
tic; ddx = DGradient(DGradient(x)); toc
tic; ddx = conv(x,[.25 0 -.5 0 .25],'same'); toc
Elapsed time is 0.251547 seconds.
Elapsed time is 0.025728 seconds.
Elapsed time is 0.028208 seconds
Matlab 2009a/64, Core2Duo, Win7
Más respuestas (2)
Roger Stafford
el 16 de En. de 2013
Editada: Bruno Luong
el 13 de Mzo. de 2022
Let (x1,y1), (x2,y2), and (x3,y3) be three successive points on your curve. The curvature of a circle drawn through them is simply four times the area of the triangle formed by the three points divided by the product of its three sides. Using the coordinates of the points this is given by:
K = 2*abs((x2-x1).*(y3-y1)-(x3-x1).*(y2-y1)) ./ ...
sqrt(((x2-x1).^2+(y2-y1).^2).*((x3-x1).^2+(y3-y1).^2).*((x3-x2).^2+(y3-y2).^2));
You can consider this as an approximation to the curve's curvature at the middle point of the three points.
2 comentarios
Jan
el 16 de En. de 2013
+1, I've waited for this answer. See http://www.mathworks.com/matlabcentral/newsreader/view_thread/152405.
Moreno, M.
el 13 de Mzo. de 2022
Editada: Jan
el 13 de Mzo. de 2022
Ver también
Categorías
Más información sobre ANOVA en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!