Fitting Curve With an Inverse Which Fits a Polynomial
56 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Ephraim Bryski
el 5 de Oct. de 2020
Comentada: Ameer Hamza
el 5 de Oct. de 2020
Hi. I have 8 data points with x and y values. I would like to input new y values and interpolate x values.
I am able to input new x values and interpolate y values. I can fit the points with a sixth order polynomial for y vs. x which is valid in the range. However, I cannot fit a polynomial for x vs. y
One approach is to solve the polynomial for each y value; however, I have thousands of y values I want to interpolate for, so it would be extremely computationally intensive.
Does anyone know a faster approach? Thanks!![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/371497/image.png)
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/371497/image.png)
0 comentarios
Respuesta aceptada
Ameer Hamza
el 5 de Oct. de 2020
Editada: Ameer Hamza
el 5 de Oct. de 2020
The inverse of a polynomial is not a polynomial, so you cannot simply interpolate the inverse function. Following shows two approaches
1) fzero()
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
y_pred = @(x) polyval(pf, x);
% find x, when y = 100;
y_val = 100;
x_val = fzero(@(x) y_pred(x)-y_val, rand);
2) Polynomial root finding. This method gives all possible solutions
x = linspace(0, 2, 8);
y = 5*x.^6 + 3*x.^5; % y varies from 0 to 416.
pf = polyfit(x, y, 6);
% find x, when y = 100;
y_val = 100;
pf(end) = pf(end)-y_val;
x_vals = roots(pf);
x_vals = x_vals(imag(x_vals)==0); % if you only want real roots.
2 comentarios
Ameer Hamza
el 5 de Oct. de 2020
I am glad to be of help!
Yes, symbolic mathematics is much slower as compared to numerical equivalent.
Más respuestas (0)
Ver también
Categorías
Más información sobre Polynomials en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!