Writing nonlinear constraint in fmincon

2 visualizaciones (últimos 30 días)
george pepper
george pepper el 23 de Oct. de 2020
Comentada: george pepper el 27 de Oct. de 2020
Hello,
I minimize a function with 4 parameters on fmincon. The vector of parameters is b=[a1 a2 b1 b2 ]. How can I add a nonlinear constraint such that 5/b1<b2?
  2 comentarios
Matt J
Matt J el 24 de Oct. de 2020
Editada: Matt J el 24 de Oct. de 2020
Note that it can be critically misleading to people to say you want 5/b1<b2 if you really mean 5/b1<=b2. Theoretically, for example, the following minimization problem no solution:
min. x,
s.t. x>0
but the solution to,
min. x
s.t. x>=0
is x=0.
george pepper
george pepper el 27 de Oct. de 2020
Thanks a lot! This is great.

Iniciar sesión para comentar.

Respuesta aceptada

Walter Roberson
Walter Roberson el 24 de Oct. de 2020
5/b1 < b2 implies 5 < b2*b1 implies 0 < b2*b1 - 5 implies b2*b1 - 5 < 0 implies b2*b1 - 5 + delta = 0 for some positive delta.
This leads to the constraint
delta = eps(realmin);
b(3)*b(4) - 5 + delta %<= 0 implied
However I would suggest you think more about your boundary constraint. Is 5/b1 == b2 an actual problem for your situation? If it is then you run serious risks that due to round-off issues, that whatever calculation fails with 5/b1 == b2, will not round in a "fortunate" way.
I personally would probably not use eps(realmin) for the delta: I would be more likely to use 5*(1-eps) instead of 5+delta
  3 comentarios
Walter Roberson
Walter Roberson el 24 de Oct. de 2020
True, I forgot about the case of negatives.
You could always code
5/b(3) - b(4)
and make the appropriate alteration for the border equality... provided that you know that b(3) is never 0.
george pepper
george pepper el 27 de Oct. de 2020
Thank you very much!

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Nonlinear Optimization en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by