# Matrix inversion and LU Decomposition. Having issues with the for loops and how they reference inputs.

4 visualizaciones (últimos 30 días)
Susanna Westersund el 26 de Oct. de 2020
Respondida: Divija Aleti el 29 de Oct. de 2020
function output =myMatrixInversion(A)
%% Problem Setup
i=1;
n=size(A);
AInv=zeros(n,n);
L=eye(n);
I=eye(n);
%% Forward Elimination w/ Multiplier Recording
% Reminder 1: Use nested loops
% Reminder 2: Use MATLAB vector/matrix operations wherever appropriate to replace unnecessary loops and simplify your code
% Reminder 3: Do not forget to display the updated coefficient matrix at the end of each FE step
for i=1:n-1 % run through each of the rows
for j=i+1:n % run through each of the columns
A(j,i+1:n)=A(j,i+1:n)-x*A(i,i+1:n)); % take the number and divide it
L(j,i)=A(j,i)/A(i,i); %simultaneously fill in L matrix
end
fprintf('\n\nIteration #%2d:\n', i)
fprintf(' The matrix is %.4e\n', A)
end
%% Forward Substitution
% Reminder 1: Use nested loops
% Reminder 2: Use MATLAB vector/matrix operations wherever appropriate to replace unnecessary loops and simplify your code
for i=1:1:n
sum=0;
for j=(i-1):1:n
sum=sum-L(i,j)*z(i,j);
end
z(i,j)=sum/L(i,i);
end
%% Backward Substitution
% Reminder 1: Use nested loops
% Reminder 2: Use MATLAB vector/matrix operations wherever appropriate to replace unnecessary loops and simplify your code
for a=1:n
for i=n:-1:1
sum=z(i,a);
for j=(i+1):1:n
sum=sum-U(i,j)*x(j,a);
end
x(i,j)=sum/U(i,i);
end
end
%% Final Output and Display
output=[L, U, z, x];
end
##### 2 comentariosMostrar NingunoOcultar Ninguno
John D'Errico el 26 de Oct. de 2020
What issues do you have? What exactly is your question?
Susanna Westersund el 26 de Oct. de 2020
I'm struggling with my first set of nested for loops, and don't really know how to go about fixing the i and j values, like if I am referencing them right to create the upper and lower triangular matrix?

Iniciar sesión para comentar.

### Respuestas (1)

Divija Aleti el 29 de Oct. de 2020
Hi Susanna,
I understand that you want to obtain the upper and lower triangular matrices and solve the equation 'Ax=I', to find the inverse of matrix 'A'. Do refer to the following links to get to know about the MATLAB functions that can be used to achieve this.
##### 0 comentariosMostrar -2 comentarios más antiguosOcultar -2 comentarios más antiguos

Iniciar sesión para comentar.

### Categorías

Más información sobre Sparse Matrices en Help Center y File Exchange.

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by